Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2023-03, Vol.76, p.193-203
Hauptverfasser: McNaught, Kevin J., Kuatsjah, Eugene, Zahn, Michael, Prates, Érica T., Shao, Huiling, Bentley, Gayle J., Pickford, Andrew R., Gruber, Josephine N., Hestmark, Kelley V., Jacobson, Daniel A., Poirier, Brenton C., Ling, Chen, San Marchi, Myrsini, Michener, William E., Nicora, Carrie D., Sanders, Jacob N., Szostkiewicz, Caralyn J., Veličković, Dušan, Zhou, Mowei, Munoz, Nathalie, Kim, Young-Mo, Magnuson, Jon K., Burnum-Johnson, Kristin E., Houk, K.N., McGeehan, John E., Johnson, Christopher W., Beckham, Gregg T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue
container_start_page 193
container_title Metabolic engineering
container_volume 76
creator McNaught, Kevin J.
Kuatsjah, Eugene
Zahn, Michael
Prates, Érica T.
Shao, Huiling
Bentley, Gayle J.
Pickford, Andrew R.
Gruber, Josephine N.
Hestmark, Kelley V.
Jacobson, Daniel A.
Poirier, Brenton C.
Ling, Chen
San Marchi, Myrsini
Michener, William E.
Nicora, Carrie D.
Sanders, Jacob N.
Szostkiewicz, Caralyn J.
Veličković, Dušan
Zhou, Mowei
Munoz, Nathalie
Kim, Young-Mo
Magnuson, Jon K.
Burnum-Johnson, Kristin E.
Houk, K.N.
McGeehan, John E.
Johnson, Christopher W.
Beckham, Gregg T.
description Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications. •P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.
doi_str_mv 10.1016/j.ymben.2023.02.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834252996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717623000265</els_id><sourcerecordid>2780066879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqXwC5BQRpYEPxI7Hhig4lFRCYYyW459I1w1cYkdpP57Ulo6wnTv8J1zpA-hS4Izggm_WWabpoI2o5iyDNMMY36ExgRLngpS5seHX_AROgthiTEhhSSnaMS4kLwQ5Rjdz1oXnY7Ot4mvk1rHuEm0cTapnA-bNn5AcCFxbfIWoLe-8a0OybqPzurkZUHzHJ-jk1qvAlzs7wS9Pz4sps_p_PVpNr2bpyZnIqal1dLyQptCFrZiJTWiJhKXpqJaYGoYpZxZAhSAWhC5sZyJinFNakyhKNgEXe96153_7CFE1bhgYLXSLfg-KFqynBZUSv4_KsrBFi-FHFC2Q03nQ-igVuvONbrbKILV1rNaqh_PautZYaqG5JC62g_0VQP2kPkVOwC3OwAGI18OOhWMg9aAdR2YqKx3fw58A3Ydji8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780066879</pqid></control><display><type>article</type><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</creator><creatorcontrib>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</creatorcontrib><description>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications. •P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2023.02.006</identifier><identifier>PMID: 36796578</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics ; biosynthesis ; biotechnology ; Decarboxylase ; decarboxylation ; enzymes ; Fatty acid biosynthesis ; Fatty Acids ; Hotdog fold ; Mutagenesis ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - metabolism ; X-ray diffraction</subject><ispartof>Metabolic engineering, 2023-03, Vol.76, p.193-203</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</citedby><cites>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</cites><orcidid>0000-0002-3480-212X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717623000265$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36796578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNaught, Kevin J.</creatorcontrib><creatorcontrib>Kuatsjah, Eugene</creatorcontrib><creatorcontrib>Zahn, Michael</creatorcontrib><creatorcontrib>Prates, Érica T.</creatorcontrib><creatorcontrib>Shao, Huiling</creatorcontrib><creatorcontrib>Bentley, Gayle J.</creatorcontrib><creatorcontrib>Pickford, Andrew R.</creatorcontrib><creatorcontrib>Gruber, Josephine N.</creatorcontrib><creatorcontrib>Hestmark, Kelley V.</creatorcontrib><creatorcontrib>Jacobson, Daniel A.</creatorcontrib><creatorcontrib>Poirier, Brenton C.</creatorcontrib><creatorcontrib>Ling, Chen</creatorcontrib><creatorcontrib>San Marchi, Myrsini</creatorcontrib><creatorcontrib>Michener, William E.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Szostkiewicz, Caralyn J.</creatorcontrib><creatorcontrib>Veličković, Dušan</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>McGeehan, John E.</creatorcontrib><creatorcontrib>Johnson, Christopher W.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications. •P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</description><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics</subject><subject>biosynthesis</subject><subject>biotechnology</subject><subject>Decarboxylase</subject><subject>decarboxylation</subject><subject>enzymes</subject><subject>Fatty acid biosynthesis</subject><subject>Fatty Acids</subject><subject>Hotdog fold</subject><subject>Mutagenesis</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - metabolism</subject><subject>X-ray diffraction</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqXwC5BQRpYEPxI7Hhig4lFRCYYyW459I1w1cYkdpP57Ulo6wnTv8J1zpA-hS4Izggm_WWabpoI2o5iyDNMMY36ExgRLngpS5seHX_AROgthiTEhhSSnaMS4kLwQ5Rjdz1oXnY7Ot4mvk1rHuEm0cTapnA-bNn5AcCFxbfIWoLe-8a0OybqPzurkZUHzHJ-jk1qvAlzs7wS9Pz4sps_p_PVpNr2bpyZnIqal1dLyQptCFrZiJTWiJhKXpqJaYGoYpZxZAhSAWhC5sZyJinFNakyhKNgEXe96153_7CFE1bhgYLXSLfg-KFqynBZUSv4_KsrBFi-FHFC2Q03nQ-igVuvONbrbKILV1rNaqh_PautZYaqG5JC62g_0VQP2kPkVOwC3OwAGI18OOhWMg9aAdR2YqKx3fw58A3Ydji8</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>McNaught, Kevin J.</creator><creator>Kuatsjah, Eugene</creator><creator>Zahn, Michael</creator><creator>Prates, Érica T.</creator><creator>Shao, Huiling</creator><creator>Bentley, Gayle J.</creator><creator>Pickford, Andrew R.</creator><creator>Gruber, Josephine N.</creator><creator>Hestmark, Kelley V.</creator><creator>Jacobson, Daniel A.</creator><creator>Poirier, Brenton C.</creator><creator>Ling, Chen</creator><creator>San Marchi, Myrsini</creator><creator>Michener, William E.</creator><creator>Nicora, Carrie D.</creator><creator>Sanders, Jacob N.</creator><creator>Szostkiewicz, Caralyn J.</creator><creator>Veličković, Dušan</creator><creator>Zhou, Mowei</creator><creator>Munoz, Nathalie</creator><creator>Kim, Young-Mo</creator><creator>Magnuson, Jon K.</creator><creator>Burnum-Johnson, Kristin E.</creator><creator>Houk, K.N.</creator><creator>McGeehan, John E.</creator><creator>Johnson, Christopher W.</creator><creator>Beckham, Gregg T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid></search><sort><creationdate>202303</creationdate><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><author>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics</topic><topic>biosynthesis</topic><topic>biotechnology</topic><topic>Decarboxylase</topic><topic>decarboxylation</topic><topic>enzymes</topic><topic>Fatty acid biosynthesis</topic><topic>Fatty Acids</topic><topic>Hotdog fold</topic><topic>Mutagenesis</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - metabolism</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNaught, Kevin J.</creatorcontrib><creatorcontrib>Kuatsjah, Eugene</creatorcontrib><creatorcontrib>Zahn, Michael</creatorcontrib><creatorcontrib>Prates, Érica T.</creatorcontrib><creatorcontrib>Shao, Huiling</creatorcontrib><creatorcontrib>Bentley, Gayle J.</creatorcontrib><creatorcontrib>Pickford, Andrew R.</creatorcontrib><creatorcontrib>Gruber, Josephine N.</creatorcontrib><creatorcontrib>Hestmark, Kelley V.</creatorcontrib><creatorcontrib>Jacobson, Daniel A.</creatorcontrib><creatorcontrib>Poirier, Brenton C.</creatorcontrib><creatorcontrib>Ling, Chen</creatorcontrib><creatorcontrib>San Marchi, Myrsini</creatorcontrib><creatorcontrib>Michener, William E.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Szostkiewicz, Caralyn J.</creatorcontrib><creatorcontrib>Veličković, Dušan</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>McGeehan, John E.</creatorcontrib><creatorcontrib>Johnson, Christopher W.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNaught, Kevin J.</au><au>Kuatsjah, Eugene</au><au>Zahn, Michael</au><au>Prates, Érica T.</au><au>Shao, Huiling</au><au>Bentley, Gayle J.</au><au>Pickford, Andrew R.</au><au>Gruber, Josephine N.</au><au>Hestmark, Kelley V.</au><au>Jacobson, Daniel A.</au><au>Poirier, Brenton C.</au><au>Ling, Chen</au><au>San Marchi, Myrsini</au><au>Michener, William E.</au><au>Nicora, Carrie D.</au><au>Sanders, Jacob N.</au><au>Szostkiewicz, Caralyn J.</au><au>Veličković, Dušan</au><au>Zhou, Mowei</au><au>Munoz, Nathalie</au><au>Kim, Young-Mo</au><au>Magnuson, Jon K.</au><au>Burnum-Johnson, Kristin E.</au><au>Houk, K.N.</au><au>McGeehan, John E.</au><au>Johnson, Christopher W.</au><au>Beckham, Gregg T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2023-03</date><risdate>2023</risdate><volume>76</volume><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications. •P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>36796578</pmid><doi>10.1016/j.ymben.2023.02.006</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2023-03, Vol.76, p.193-203
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_2834252996
source MEDLINE; Elsevier ScienceDirect Journals
subjects 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics
biosynthesis
biotechnology
Decarboxylase
decarboxylation
enzymes
Fatty acid biosynthesis
Fatty Acids
Hotdog fold
Mutagenesis
Pseudomonas putida
Pseudomonas putida - genetics
Pseudomonas putida - metabolism
X-ray diffraction
title Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiation%20of%20fatty%20acid%20biosynthesis%20in%20Pseudomonas%20putida%20KT2440&rft.jtitle=Metabolic%20engineering&rft.au=McNaught,%20Kevin%20J.&rft.date=2023-03&rft.volume=76&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2023.02.006&rft_dat=%3Cproquest_cross%3E2780066879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780066879&rft_id=info:pmid/36796578&rft_els_id=S1096717623000265&rfr_iscdi=true