Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440
Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demo...
Gespeichert in:
Veröffentlicht in: | Metabolic engineering 2023-03, Vol.76, p.193-203 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | |
container_start_page | 193 |
container_title | Metabolic engineering |
container_volume | 76 |
creator | McNaught, Kevin J. Kuatsjah, Eugene Zahn, Michael Prates, Érica T. Shao, Huiling Bentley, Gayle J. Pickford, Andrew R. Gruber, Josephine N. Hestmark, Kelley V. Jacobson, Daniel A. Poirier, Brenton C. Ling, Chen San Marchi, Myrsini Michener, William E. Nicora, Carrie D. Sanders, Jacob N. Szostkiewicz, Caralyn J. Veličković, Dušan Zhou, Mowei Munoz, Nathalie Kim, Young-Mo Magnuson, Jon K. Burnum-Johnson, Kristin E. Houk, K.N. McGeehan, John E. Johnson, Christopher W. Beckham, Gregg T. |
description | Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
•P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria. |
doi_str_mv | 10.1016/j.ymben.2023.02.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834252996</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717623000265</els_id><sourcerecordid>2780066879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqXwC5BQRpYEPxI7Hhig4lFRCYYyW459I1w1cYkdpP57Ulo6wnTv8J1zpA-hS4Izggm_WWabpoI2o5iyDNMMY36ExgRLngpS5seHX_AROgthiTEhhSSnaMS4kLwQ5Rjdz1oXnY7Ot4mvk1rHuEm0cTapnA-bNn5AcCFxbfIWoLe-8a0OybqPzurkZUHzHJ-jk1qvAlzs7wS9Pz4sps_p_PVpNr2bpyZnIqal1dLyQptCFrZiJTWiJhKXpqJaYGoYpZxZAhSAWhC5sZyJinFNakyhKNgEXe96153_7CFE1bhgYLXSLfg-KFqynBZUSv4_KsrBFi-FHFC2Q03nQ-igVuvONbrbKILV1rNaqh_PautZYaqG5JC62g_0VQP2kPkVOwC3OwAGI18OOhWMg9aAdR2YqKx3fw58A3Ydji8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780066879</pqid></control><display><type>article</type><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</creator><creatorcontrib>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</creatorcontrib><description>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
•P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2023.02.006</identifier><identifier>PMID: 36796578</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics ; biosynthesis ; biotechnology ; Decarboxylase ; decarboxylation ; enzymes ; Fatty acid biosynthesis ; Fatty Acids ; Hotdog fold ; Mutagenesis ; Pseudomonas putida ; Pseudomonas putida - genetics ; Pseudomonas putida - metabolism ; X-ray diffraction</subject><ispartof>Metabolic engineering, 2023-03, Vol.76, p.193-203</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</citedby><cites>FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</cites><orcidid>0000-0002-3480-212X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717623000265$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36796578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNaught, Kevin J.</creatorcontrib><creatorcontrib>Kuatsjah, Eugene</creatorcontrib><creatorcontrib>Zahn, Michael</creatorcontrib><creatorcontrib>Prates, Érica T.</creatorcontrib><creatorcontrib>Shao, Huiling</creatorcontrib><creatorcontrib>Bentley, Gayle J.</creatorcontrib><creatorcontrib>Pickford, Andrew R.</creatorcontrib><creatorcontrib>Gruber, Josephine N.</creatorcontrib><creatorcontrib>Hestmark, Kelley V.</creatorcontrib><creatorcontrib>Jacobson, Daniel A.</creatorcontrib><creatorcontrib>Poirier, Brenton C.</creatorcontrib><creatorcontrib>Ling, Chen</creatorcontrib><creatorcontrib>San Marchi, Myrsini</creatorcontrib><creatorcontrib>Michener, William E.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Szostkiewicz, Caralyn J.</creatorcontrib><creatorcontrib>Veličković, Dušan</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>McGeehan, John E.</creatorcontrib><creatorcontrib>Johnson, Christopher W.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
•P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</description><subject>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics</subject><subject>biosynthesis</subject><subject>biotechnology</subject><subject>Decarboxylase</subject><subject>decarboxylation</subject><subject>enzymes</subject><subject>Fatty acid biosynthesis</subject><subject>Fatty Acids</subject><subject>Hotdog fold</subject><subject>Mutagenesis</subject><subject>Pseudomonas putida</subject><subject>Pseudomonas putida - genetics</subject><subject>Pseudomonas putida - metabolism</subject><subject>X-ray diffraction</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqXwC5BQRpYEPxI7Hhig4lFRCYYyW459I1w1cYkdpP57Ulo6wnTv8J1zpA-hS4Izggm_WWabpoI2o5iyDNMMY36ExgRLngpS5seHX_AROgthiTEhhSSnaMS4kLwQ5Rjdz1oXnY7Ot4mvk1rHuEm0cTapnA-bNn5AcCFxbfIWoLe-8a0OybqPzurkZUHzHJ-jk1qvAlzs7wS9Pz4sps_p_PVpNr2bpyZnIqal1dLyQptCFrZiJTWiJhKXpqJaYGoYpZxZAhSAWhC5sZyJinFNakyhKNgEXe96153_7CFE1bhgYLXSLfg-KFqynBZUSv4_KsrBFi-FHFC2Q03nQ-igVuvONbrbKILV1rNaqh_PautZYaqG5JC62g_0VQP2kPkVOwC3OwAGI18OOhWMg9aAdR2YqKx3fw58A3Ydji8</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>McNaught, Kevin J.</creator><creator>Kuatsjah, Eugene</creator><creator>Zahn, Michael</creator><creator>Prates, Érica T.</creator><creator>Shao, Huiling</creator><creator>Bentley, Gayle J.</creator><creator>Pickford, Andrew R.</creator><creator>Gruber, Josephine N.</creator><creator>Hestmark, Kelley V.</creator><creator>Jacobson, Daniel A.</creator><creator>Poirier, Brenton C.</creator><creator>Ling, Chen</creator><creator>San Marchi, Myrsini</creator><creator>Michener, William E.</creator><creator>Nicora, Carrie D.</creator><creator>Sanders, Jacob N.</creator><creator>Szostkiewicz, Caralyn J.</creator><creator>Veličković, Dušan</creator><creator>Zhou, Mowei</creator><creator>Munoz, Nathalie</creator><creator>Kim, Young-Mo</creator><creator>Magnuson, Jon K.</creator><creator>Burnum-Johnson, Kristin E.</creator><creator>Houk, K.N.</creator><creator>McGeehan, John E.</creator><creator>Johnson, Christopher W.</creator><creator>Beckham, Gregg T.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid></search><sort><creationdate>202303</creationdate><title>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</title><author>McNaught, Kevin J. ; Kuatsjah, Eugene ; Zahn, Michael ; Prates, Érica T. ; Shao, Huiling ; Bentley, Gayle J. ; Pickford, Andrew R. ; Gruber, Josephine N. ; Hestmark, Kelley V. ; Jacobson, Daniel A. ; Poirier, Brenton C. ; Ling, Chen ; San Marchi, Myrsini ; Michener, William E. ; Nicora, Carrie D. ; Sanders, Jacob N. ; Szostkiewicz, Caralyn J. ; Veličković, Dušan ; Zhou, Mowei ; Munoz, Nathalie ; Kim, Young-Mo ; Magnuson, Jon K. ; Burnum-Johnson, Kristin E. ; Houk, K.N. ; McGeehan, John E. ; Johnson, Christopher W. ; Beckham, Gregg T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-8da9d65ac595db382c7f1908cb2a702c32263d1e2ee2de74cd637b36a1f02e553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics</topic><topic>biosynthesis</topic><topic>biotechnology</topic><topic>Decarboxylase</topic><topic>decarboxylation</topic><topic>enzymes</topic><topic>Fatty acid biosynthesis</topic><topic>Fatty Acids</topic><topic>Hotdog fold</topic><topic>Mutagenesis</topic><topic>Pseudomonas putida</topic><topic>Pseudomonas putida - genetics</topic><topic>Pseudomonas putida - metabolism</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNaught, Kevin J.</creatorcontrib><creatorcontrib>Kuatsjah, Eugene</creatorcontrib><creatorcontrib>Zahn, Michael</creatorcontrib><creatorcontrib>Prates, Érica T.</creatorcontrib><creatorcontrib>Shao, Huiling</creatorcontrib><creatorcontrib>Bentley, Gayle J.</creatorcontrib><creatorcontrib>Pickford, Andrew R.</creatorcontrib><creatorcontrib>Gruber, Josephine N.</creatorcontrib><creatorcontrib>Hestmark, Kelley V.</creatorcontrib><creatorcontrib>Jacobson, Daniel A.</creatorcontrib><creatorcontrib>Poirier, Brenton C.</creatorcontrib><creatorcontrib>Ling, Chen</creatorcontrib><creatorcontrib>San Marchi, Myrsini</creatorcontrib><creatorcontrib>Michener, William E.</creatorcontrib><creatorcontrib>Nicora, Carrie D.</creatorcontrib><creatorcontrib>Sanders, Jacob N.</creatorcontrib><creatorcontrib>Szostkiewicz, Caralyn J.</creatorcontrib><creatorcontrib>Veličković, Dušan</creatorcontrib><creatorcontrib>Zhou, Mowei</creatorcontrib><creatorcontrib>Munoz, Nathalie</creatorcontrib><creatorcontrib>Kim, Young-Mo</creatorcontrib><creatorcontrib>Magnuson, Jon K.</creatorcontrib><creatorcontrib>Burnum-Johnson, Kristin E.</creatorcontrib><creatorcontrib>Houk, K.N.</creatorcontrib><creatorcontrib>McGeehan, John E.</creatorcontrib><creatorcontrib>Johnson, Christopher W.</creatorcontrib><creatorcontrib>Beckham, Gregg T.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McNaught, Kevin J.</au><au>Kuatsjah, Eugene</au><au>Zahn, Michael</au><au>Prates, Érica T.</au><au>Shao, Huiling</au><au>Bentley, Gayle J.</au><au>Pickford, Andrew R.</au><au>Gruber, Josephine N.</au><au>Hestmark, Kelley V.</au><au>Jacobson, Daniel A.</au><au>Poirier, Brenton C.</au><au>Ling, Chen</au><au>San Marchi, Myrsini</au><au>Michener, William E.</au><au>Nicora, Carrie D.</au><au>Sanders, Jacob N.</au><au>Szostkiewicz, Caralyn J.</au><au>Veličković, Dušan</au><au>Zhou, Mowei</au><au>Munoz, Nathalie</au><au>Kim, Young-Mo</au><au>Magnuson, Jon K.</au><au>Burnum-Johnson, Kristin E.</au><au>Houk, K.N.</au><au>McGeehan, John E.</au><au>Johnson, Christopher W.</au><au>Beckham, Gregg T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2023-03</date><risdate>2023</risdate><volume>76</volume><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional β-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.
•P. putida KT2440 harbors three pathways to initiate fatty acid biosynthesis.•FabH1 and FabH2, are KASIII enzymes with differing specificity to acyl-CoAs.•The third pathway proceeds through MadB-catalyzed decarboxylation of malonyl-ACP.•MadB catalyzes its reaction by stabilizing the C3-carbonyl moiety of the substrate.•Functional homologs of MadB are prevalent in the domain Bacteria.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>36796578</pmid><doi>10.1016/j.ymben.2023.02.006</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3480-212X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1096-7176 |
ispartof | Metabolic engineering, 2023-03, Vol.76, p.193-203 |
issn | 1096-7176 1096-7184 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834252996 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase - genetics biosynthesis biotechnology Decarboxylase decarboxylation enzymes Fatty acid biosynthesis Fatty Acids Hotdog fold Mutagenesis Pseudomonas putida Pseudomonas putida - genetics Pseudomonas putida - metabolism X-ray diffraction |
title | Initiation of fatty acid biosynthesis in Pseudomonas putida KT2440 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Initiation%20of%20fatty%20acid%20biosynthesis%20in%20Pseudomonas%20putida%20KT2440&rft.jtitle=Metabolic%20engineering&rft.au=McNaught,%20Kevin%20J.&rft.date=2023-03&rft.volume=76&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2023.02.006&rft_dat=%3Cproquest_cross%3E2780066879%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780066879&rft_id=info:pmid/36796578&rft_els_id=S1096717623000265&rfr_iscdi=true |