A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm
The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. A...
Gespeichert in:
Veröffentlicht in: | Industrial crops and products 2022-12, Vol.189, p.115814, Article 115814 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 115814 |
container_title | Industrial crops and products |
container_volume | 189 |
creator | Adnan, Muhammad Shen, Yinjuan Ma, Fumin Wang, Maoyao Jiang, Fuhong Hu, Qian Mao, Le Lu, Pan Chen, Xiaoru He, Guanyong Khan, Muhammad Tahir Deng, Zuhu Chen, Baoshan Zhang, Muqing Huang, Jiangfeng |
description | The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane. |
doi_str_mv | 10.1016/j.indcrop.2022.115814 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834249737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834249737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</originalsourceid><addsrcrecordid>eNotkLtugzAYhRlaqWnaR6jksQvUF2xgjKLepEhd2tkyvoBTsIkNA6_RJ66jZDln-fT_R1-WPSFYIIjYy7GwTsngpwJDjAuEaI3Km2wDG8xyxhp4l93HeIQQVRBXm-xvB06Llb9AOAWmoKWNGng3WKeB0yLk1pkgglYgTlrOwUfppxWIGMUKjA-gt12fz33wS9dPywyiDFo76zrQWj8mDijb6Tjb1g52XoF1YBCh0wkUQ8qlE0GK9K3TYZwGEceH7NaIIerHa2-zn7fX7_1Hfvh6_9zvDrkkhMw5parWEkFlCCwphK1SDTWIMVVVVS0ha1QpBaOsrRRqWdMSLChSsKbaGFhKss2eL3en4E9LmshHG6UehrTGL5HjmpS4bCpSJZRe0GQ2xqANn4IdRVg5gvzsnR_51Ts_e-cX7-QfNtx_Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834249737</pqid></control><display><type>article</type><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><source>Elsevier ScienceDirect Journals</source><creator>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</creator><creatorcontrib>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</creatorcontrib><description>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</description><identifier>ISSN: 0926-6690</identifier><identifier>DOI: 10.1016/j.indcrop.2022.115814</identifier><language>eng</language><subject>biomass ; digestibility ; energy ; equations ; germplasm ; near-infrared spectroscopy ; prediction ; saccharification ; sugarcane ; sugars</subject><ispartof>Industrial crops and products, 2022-12, Vol.189, p.115814, Article 115814</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</citedby><cites>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</cites><orcidid>0000-0001-7784-4509 ; 0000-0003-3138-3422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Shen, Yinjuan</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Wang, Maoyao</creatorcontrib><creatorcontrib>Jiang, Fuhong</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Mao, Le</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Chen, Xiaoru</creatorcontrib><creatorcontrib>He, Guanyong</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Deng, Zuhu</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Zhang, Muqing</creatorcontrib><creatorcontrib>Huang, Jiangfeng</creatorcontrib><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><title>Industrial crops and products</title><description>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</description><subject>biomass</subject><subject>digestibility</subject><subject>energy</subject><subject>equations</subject><subject>germplasm</subject><subject>near-infrared spectroscopy</subject><subject>prediction</subject><subject>saccharification</subject><subject>sugarcane</subject><subject>sugars</subject><issn>0926-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLtugzAYhRlaqWnaR6jksQvUF2xgjKLepEhd2tkyvoBTsIkNA6_RJ66jZDln-fT_R1-WPSFYIIjYy7GwTsngpwJDjAuEaI3Km2wDG8xyxhp4l93HeIQQVRBXm-xvB06Llb9AOAWmoKWNGng3WKeB0yLk1pkgglYgTlrOwUfppxWIGMUKjA-gt12fz33wS9dPywyiDFo76zrQWj8mDijb6Tjb1g52XoF1YBCh0wkUQ8qlE0GK9K3TYZwGEceH7NaIIerHa2-zn7fX7_1Hfvh6_9zvDrkkhMw5parWEkFlCCwphK1SDTWIMVVVVS0ha1QpBaOsrRRqWdMSLChSsKbaGFhKss2eL3en4E9LmshHG6UehrTGL5HjmpS4bCpSJZRe0GQ2xqANn4IdRVg5gvzsnR_51Ts_e-cX7-QfNtx_Qw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Adnan, Muhammad</creator><creator>Shen, Yinjuan</creator><creator>Ma, Fumin</creator><creator>Wang, Maoyao</creator><creator>Jiang, Fuhong</creator><creator>Hu, Qian</creator><creator>Mao, Le</creator><creator>Lu, Pan</creator><creator>Chen, Xiaoru</creator><creator>He, Guanyong</creator><creator>Khan, Muhammad Tahir</creator><creator>Deng, Zuhu</creator><creator>Chen, Baoshan</creator><creator>Zhang, Muqing</creator><creator>Huang, Jiangfeng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7784-4509</orcidid><orcidid>https://orcid.org/0000-0003-3138-3422</orcidid></search><sort><creationdate>20221201</creationdate><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><author>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biomass</topic><topic>digestibility</topic><topic>energy</topic><topic>equations</topic><topic>germplasm</topic><topic>near-infrared spectroscopy</topic><topic>prediction</topic><topic>saccharification</topic><topic>sugarcane</topic><topic>sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Shen, Yinjuan</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Wang, Maoyao</creatorcontrib><creatorcontrib>Jiang, Fuhong</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Mao, Le</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Chen, Xiaoru</creatorcontrib><creatorcontrib>He, Guanyong</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Deng, Zuhu</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Zhang, Muqing</creatorcontrib><creatorcontrib>Huang, Jiangfeng</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial crops and products</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adnan, Muhammad</au><au>Shen, Yinjuan</au><au>Ma, Fumin</au><au>Wang, Maoyao</au><au>Jiang, Fuhong</au><au>Hu, Qian</au><au>Mao, Le</au><au>Lu, Pan</au><au>Chen, Xiaoru</au><au>He, Guanyong</au><au>Khan, Muhammad Tahir</au><au>Deng, Zuhu</au><au>Chen, Baoshan</au><au>Zhang, Muqing</au><au>Huang, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</atitle><jtitle>Industrial crops and products</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>189</volume><spage>115814</spage><pages>115814-</pages><artnum>115814</artnum><issn>0926-6690</issn><abstract>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</abstract><doi>10.1016/j.indcrop.2022.115814</doi><orcidid>https://orcid.org/0000-0001-7784-4509</orcidid><orcidid>https://orcid.org/0000-0003-3138-3422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6690 |
ispartof | Industrial crops and products, 2022-12, Vol.189, p.115814, Article 115814 |
issn | 0926-6690 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834249737 |
source | Elsevier ScienceDirect Journals |
subjects | biomass digestibility energy equations germplasm near-infrared spectroscopy prediction saccharification sugarcane sugars |
title | A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quick%20and%20precise%20online%20near-infrared%20spectroscopy%20assay%20for%20high-throughput%20screening%20biomass%20digestibility%20in%20large%20scale%20sugarcane%20germplasm&rft.jtitle=Industrial%20crops%20and%20products&rft.au=Adnan,%20Muhammad&rft.date=2022-12-01&rft.volume=189&rft.spage=115814&rft.pages=115814-&rft.artnum=115814&rft.issn=0926-6690&rft_id=info:doi/10.1016/j.indcrop.2022.115814&rft_dat=%3Cproquest_cross%3E2834249737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834249737&rft_id=info:pmid/&rfr_iscdi=true |