A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm

The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. A...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial crops and products 2022-12, Vol.189, p.115814, Article 115814
Hauptverfasser: Adnan, Muhammad, Shen, Yinjuan, Ma, Fumin, Wang, Maoyao, Jiang, Fuhong, Hu, Qian, Mao, Le, Lu, Pan, Chen, Xiaoru, He, Guanyong, Khan, Muhammad Tahir, Deng, Zuhu, Chen, Baoshan, Zhang, Muqing, Huang, Jiangfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 115814
container_title Industrial crops and products
container_volume 189
creator Adnan, Muhammad
Shen, Yinjuan
Ma, Fumin
Wang, Maoyao
Jiang, Fuhong
Hu, Qian
Mao, Le
Lu, Pan
Chen, Xiaoru
He, Guanyong
Khan, Muhammad Tahir
Deng, Zuhu
Chen, Baoshan
Zhang, Muqing
Huang, Jiangfeng
description The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.
doi_str_mv 10.1016/j.indcrop.2022.115814
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834249737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2834249737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</originalsourceid><addsrcrecordid>eNotkLtugzAYhRlaqWnaR6jksQvUF2xgjKLepEhd2tkyvoBTsIkNA6_RJ66jZDln-fT_R1-WPSFYIIjYy7GwTsngpwJDjAuEaI3Km2wDG8xyxhp4l93HeIQQVRBXm-xvB06Llb9AOAWmoKWNGng3WKeB0yLk1pkgglYgTlrOwUfppxWIGMUKjA-gt12fz33wS9dPywyiDFo76zrQWj8mDijb6Tjb1g52XoF1YBCh0wkUQ8qlE0GK9K3TYZwGEceH7NaIIerHa2-zn7fX7_1Hfvh6_9zvDrkkhMw5parWEkFlCCwphK1SDTWIMVVVVS0ha1QpBaOsrRRqWdMSLChSsKbaGFhKss2eL3en4E9LmshHG6UehrTGL5HjmpS4bCpSJZRe0GQ2xqANn4IdRVg5gvzsnR_51Ts_e-cX7-QfNtx_Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834249737</pqid></control><display><type>article</type><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><source>Elsevier ScienceDirect Journals</source><creator>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</creator><creatorcontrib>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</creatorcontrib><description>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</description><identifier>ISSN: 0926-6690</identifier><identifier>DOI: 10.1016/j.indcrop.2022.115814</identifier><language>eng</language><subject>biomass ; digestibility ; energy ; equations ; germplasm ; near-infrared spectroscopy ; prediction ; saccharification ; sugarcane ; sugars</subject><ispartof>Industrial crops and products, 2022-12, Vol.189, p.115814, Article 115814</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</citedby><cites>FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</cites><orcidid>0000-0001-7784-4509 ; 0000-0003-3138-3422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Shen, Yinjuan</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Wang, Maoyao</creatorcontrib><creatorcontrib>Jiang, Fuhong</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Mao, Le</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Chen, Xiaoru</creatorcontrib><creatorcontrib>He, Guanyong</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Deng, Zuhu</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Zhang, Muqing</creatorcontrib><creatorcontrib>Huang, Jiangfeng</creatorcontrib><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><title>Industrial crops and products</title><description>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</description><subject>biomass</subject><subject>digestibility</subject><subject>energy</subject><subject>equations</subject><subject>germplasm</subject><subject>near-infrared spectroscopy</subject><subject>prediction</subject><subject>saccharification</subject><subject>sugarcane</subject><subject>sugars</subject><issn>0926-6690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotkLtugzAYhRlaqWnaR6jksQvUF2xgjKLepEhd2tkyvoBTsIkNA6_RJ66jZDln-fT_R1-WPSFYIIjYy7GwTsngpwJDjAuEaI3Km2wDG8xyxhp4l93HeIQQVRBXm-xvB06Llb9AOAWmoKWNGng3WKeB0yLk1pkgglYgTlrOwUfppxWIGMUKjA-gt12fz33wS9dPywyiDFo76zrQWj8mDijb6Tjb1g52XoF1YBCh0wkUQ8qlE0GK9K3TYZwGEceH7NaIIerHa2-zn7fX7_1Hfvh6_9zvDrkkhMw5parWEkFlCCwphK1SDTWIMVVVVS0ha1QpBaOsrRRqWdMSLChSsKbaGFhKss2eL3en4E9LmshHG6UehrTGL5HjmpS4bCpSJZRe0GQ2xqANn4IdRVg5gvzsnR_51Ts_e-cX7-QfNtx_Qw</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Adnan, Muhammad</creator><creator>Shen, Yinjuan</creator><creator>Ma, Fumin</creator><creator>Wang, Maoyao</creator><creator>Jiang, Fuhong</creator><creator>Hu, Qian</creator><creator>Mao, Le</creator><creator>Lu, Pan</creator><creator>Chen, Xiaoru</creator><creator>He, Guanyong</creator><creator>Khan, Muhammad Tahir</creator><creator>Deng, Zuhu</creator><creator>Chen, Baoshan</creator><creator>Zhang, Muqing</creator><creator>Huang, Jiangfeng</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-7784-4509</orcidid><orcidid>https://orcid.org/0000-0003-3138-3422</orcidid></search><sort><creationdate>20221201</creationdate><title>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</title><author>Adnan, Muhammad ; Shen, Yinjuan ; Ma, Fumin ; Wang, Maoyao ; Jiang, Fuhong ; Hu, Qian ; Mao, Le ; Lu, Pan ; Chen, Xiaoru ; He, Guanyong ; Khan, Muhammad Tahir ; Deng, Zuhu ; Chen, Baoshan ; Zhang, Muqing ; Huang, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-55d8ec10df304500bdd95f166d7778c069d4ca656b7d1b69b32a51d085eff04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>biomass</topic><topic>digestibility</topic><topic>energy</topic><topic>equations</topic><topic>germplasm</topic><topic>near-infrared spectroscopy</topic><topic>prediction</topic><topic>saccharification</topic><topic>sugarcane</topic><topic>sugars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adnan, Muhammad</creatorcontrib><creatorcontrib>Shen, Yinjuan</creatorcontrib><creatorcontrib>Ma, Fumin</creatorcontrib><creatorcontrib>Wang, Maoyao</creatorcontrib><creatorcontrib>Jiang, Fuhong</creatorcontrib><creatorcontrib>Hu, Qian</creatorcontrib><creatorcontrib>Mao, Le</creatorcontrib><creatorcontrib>Lu, Pan</creatorcontrib><creatorcontrib>Chen, Xiaoru</creatorcontrib><creatorcontrib>He, Guanyong</creatorcontrib><creatorcontrib>Khan, Muhammad Tahir</creatorcontrib><creatorcontrib>Deng, Zuhu</creatorcontrib><creatorcontrib>Chen, Baoshan</creatorcontrib><creatorcontrib>Zhang, Muqing</creatorcontrib><creatorcontrib>Huang, Jiangfeng</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Industrial crops and products</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adnan, Muhammad</au><au>Shen, Yinjuan</au><au>Ma, Fumin</au><au>Wang, Maoyao</au><au>Jiang, Fuhong</au><au>Hu, Qian</au><au>Mao, Le</au><au>Lu, Pan</au><au>Chen, Xiaoru</au><au>He, Guanyong</au><au>Khan, Muhammad Tahir</au><au>Deng, Zuhu</au><au>Chen, Baoshan</au><au>Zhang, Muqing</au><au>Huang, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm</atitle><jtitle>Industrial crops and products</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>189</volume><spage>115814</spage><pages>115814-</pages><artnum>115814</artnum><issn>0926-6690</issn><abstract>The near-infrared spectroscopy (NIRS) has been used for efficient characterization and rapid assay of biomass saccharification in other energy plants, but its application in sugarcane is not reported yet. The current study collected a total of 541 sugarcane accessions to take an online NIRS assay. Among these sugarcane collections, we observed large variations in biomass digestibility, particularly for fermentable hexose and total sugar yield from fresh sugarcane stalks, which were detected ranging from 69.88–239.86kg t⁻¹ and 66.56-228.55kg t⁻¹ respectively. Using the modified partial least squares method, six reliable NIRS models were obtained with a high coefficient of determination (R²) and the ratio of prediction to deviation (RPD) values during calibration, internal-cross validation and external validation. Notably, the equation for fermentable hexose exhibited the most consistently high R² (0.98) and RPD (6.62) values, as well as retaining relatively low root mean square error during calibration (3.74kg t⁻¹) and validation (4.19kg t⁻¹), indicating excellent predictive capacity. All models demonstrated accurate and stable prediction performance in the two-year large-scale germplasm resources evaluation, and the optima accessions with high or low biomass digestibility can be screened out consistently. Therefore, this study provides a precise and consistent NIRS assay for high throughput scanning of biomass digestibility in sugarcane.</abstract><doi>10.1016/j.indcrop.2022.115814</doi><orcidid>https://orcid.org/0000-0001-7784-4509</orcidid><orcidid>https://orcid.org/0000-0003-3138-3422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0926-6690
ispartof Industrial crops and products, 2022-12, Vol.189, p.115814, Article 115814
issn 0926-6690
language eng
recordid cdi_proquest_miscellaneous_2834249737
source Elsevier ScienceDirect Journals
subjects biomass
digestibility
energy
equations
germplasm
near-infrared spectroscopy
prediction
saccharification
sugarcane
sugars
title A quick and precise online near-infrared spectroscopy assay for high-throughput screening biomass digestibility in large scale sugarcane germplasm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T02%3A48%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20quick%20and%20precise%20online%20near-infrared%20spectroscopy%20assay%20for%20high-throughput%20screening%20biomass%20digestibility%20in%20large%20scale%20sugarcane%20germplasm&rft.jtitle=Industrial%20crops%20and%20products&rft.au=Adnan,%20Muhammad&rft.date=2022-12-01&rft.volume=189&rft.spage=115814&rft.pages=115814-&rft.artnum=115814&rft.issn=0926-6690&rft_id=info:doi/10.1016/j.indcrop.2022.115814&rft_dat=%3Cproquest_cross%3E2834249737%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834249737&rft_id=info:pmid/&rfr_iscdi=true