Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines

Due to the wake effect, there is a high degree of coupling between wind turbines in a wind farm. In order to optimize the power and load performance of wind farms, it is crucial to propose an optimization strategy to attenuate the wake interference between wind turbines by wake redirection. This stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2023-06, Vol.339, p.121000, Article 121000
Hauptverfasser: Cai, Wei, Hu, Yang, Fang, Fang, Yao, Lujin, Liu, Jizhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121000
container_title Applied energy
container_volume 339
creator Cai, Wei
Hu, Yang
Fang, Fang
Yao, Lujin
Liu, Jizhen
description Due to the wake effect, there is a high degree of coupling between wind turbines in a wind farm. In order to optimize the power and load performance of wind farms, it is crucial to propose an optimization strategy to attenuate the wake interference between wind turbines by wake redirection. This study proposes a wake interference model that can consider wake deflection based on the yawed wake model. Accordingly, the interference relationship between turbines is represented as the topology of the graph. By solving for the connected components of the graph, the wind farm is divided into almost uncoupled partitions. In each partition, separate optimization problems with the objectives of power enhancement and load reduction are established. An improved Non-Dominated Sorting Genetic Algorithm with multiple crossover operators is used for solving the multi-objective optimization problem. Simulation results show that the proposed strategy can effectively lead to power enhancement and load reduction for the regular layout wind farm. For the curvilinear layout wind farm with an optimized layout considering wake effects, proposed strategy can further reduce wake disturbances to improve the performance of wind farms. •Establish a wake interference model among wind turbines considering yaw angle.•Dynamic partitioning of wind turbines via clustering nodes of undirected graph.•Optimize power production and fatigue load based on wind farm wake redirection.
doi_str_mv 10.1016/j.apenergy.2023.121000
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834247806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261923003641</els_id><sourcerecordid>2834247806</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-63470937d72408ce3f278ca0888ca4f9a8220de7fd97379e26c788c0e4b027393</originalsourceid><addsrcrecordid>eNqFUE1P4zAQtVastIXdv4B85JIytrOxcwNVfElIXEAcLdeeVC6NHeyEqqv98aRNOXOZkeZ9jN4j5JzBnAGrLtdz02HAtNrNOXAxZ5wBwA8yY0ryomZMnZAZCKgKXrH6FznNeT0SOOMwI_9ffXC0MamlXdxiol2KbrC9j4GaA9L71YB0E42jset96_-ZA7o0GcdToG4XTOst7Uzq_R7yYXXQbs0b0oTOJ5wMY0O3-3f9kJY-YP5NfjZmk_HPcZ-Rl9ub58V98fh097C4fiysKP_2RSVKCbWQTvISlEXRcKmsAaXGWTa1UZyDQ9m4WgpZI6-sHCHAcglcilqckYvJdwz3PmDudeuzxc3GBIxD1lyJkpdSQTVSq4lqU8w5YaO75FuTdpqB3tet1_qrbr2vW091j8KrSYhjkA-PSWfrMdhjfO2i_87iE7-Sjhc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834247806</pqid></control><display><type>article</type><title>Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines</title><source>Elsevier ScienceDirect Journals</source><creator>Cai, Wei ; Hu, Yang ; Fang, Fang ; Yao, Lujin ; Liu, Jizhen</creator><creatorcontrib>Cai, Wei ; Hu, Yang ; Fang, Fang ; Yao, Lujin ; Liu, Jizhen</creatorcontrib><description>Due to the wake effect, there is a high degree of coupling between wind turbines in a wind farm. In order to optimize the power and load performance of wind farms, it is crucial to propose an optimization strategy to attenuate the wake interference between wind turbines by wake redirection. This study proposes a wake interference model that can consider wake deflection based on the yawed wake model. Accordingly, the interference relationship between turbines is represented as the topology of the graph. By solving for the connected components of the graph, the wind farm is divided into almost uncoupled partitions. In each partition, separate optimization problems with the objectives of power enhancement and load reduction are established. An improved Non-Dominated Sorting Genetic Algorithm with multiple crossover operators is used for solving the multi-objective optimization problem. Simulation results show that the proposed strategy can effectively lead to power enhancement and load reduction for the regular layout wind farm. For the curvilinear layout wind farm with an optimized layout considering wake effects, proposed strategy can further reduce wake disturbances to improve the performance of wind farms. •Establish a wake interference model among wind turbines considering yaw angle.•Dynamic partitioning of wind turbines via clustering nodes of undirected graph.•Optimize power production and fatigue load based on wind farm wake redirection.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2023.121000</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algorithms ; energy ; Multi-objective optimization ; Partitioning algorithms ; power generation ; system optimization ; topology ; Wake effect ; Wake redirection ; wind ; Wind farm ; wind farms</subject><ispartof>Applied energy, 2023-06, Vol.339, p.121000, Article 121000</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-63470937d72408ce3f278ca0888ca4f9a8220de7fd97379e26c788c0e4b027393</citedby><cites>FETCH-LOGICAL-c345t-63470937d72408ce3f278ca0888ca4f9a8220de7fd97379e26c788c0e4b027393</cites><orcidid>0000-0001-9079-6978 ; 0000-0002-6850-5211 ; 0000-0003-1304-6932</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261923003641$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Yao, Lujin</creatorcontrib><creatorcontrib>Liu, Jizhen</creatorcontrib><title>Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines</title><title>Applied energy</title><description>Due to the wake effect, there is a high degree of coupling between wind turbines in a wind farm. In order to optimize the power and load performance of wind farms, it is crucial to propose an optimization strategy to attenuate the wake interference between wind turbines by wake redirection. This study proposes a wake interference model that can consider wake deflection based on the yawed wake model. Accordingly, the interference relationship between turbines is represented as the topology of the graph. By solving for the connected components of the graph, the wind farm is divided into almost uncoupled partitions. In each partition, separate optimization problems with the objectives of power enhancement and load reduction are established. An improved Non-Dominated Sorting Genetic Algorithm with multiple crossover operators is used for solving the multi-objective optimization problem. Simulation results show that the proposed strategy can effectively lead to power enhancement and load reduction for the regular layout wind farm. For the curvilinear layout wind farm with an optimized layout considering wake effects, proposed strategy can further reduce wake disturbances to improve the performance of wind farms. •Establish a wake interference model among wind turbines considering yaw angle.•Dynamic partitioning of wind turbines via clustering nodes of undirected graph.•Optimize power production and fatigue load based on wind farm wake redirection.</description><subject>algorithms</subject><subject>energy</subject><subject>Multi-objective optimization</subject><subject>Partitioning algorithms</subject><subject>power generation</subject><subject>system optimization</subject><subject>topology</subject><subject>Wake effect</subject><subject>Wake redirection</subject><subject>wind</subject><subject>Wind farm</subject><subject>wind farms</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUE1P4zAQtVastIXdv4B85JIytrOxcwNVfElIXEAcLdeeVC6NHeyEqqv98aRNOXOZkeZ9jN4j5JzBnAGrLtdz02HAtNrNOXAxZ5wBwA8yY0ryomZMnZAZCKgKXrH6FznNeT0SOOMwI_9ffXC0MamlXdxiol2KbrC9j4GaA9L71YB0E42jset96_-ZA7o0GcdToG4XTOst7Uzq_R7yYXXQbs0b0oTOJ5wMY0O3-3f9kJY-YP5NfjZmk_HPcZ-Rl9ub58V98fh097C4fiysKP_2RSVKCbWQTvISlEXRcKmsAaXGWTa1UZyDQ9m4WgpZI6-sHCHAcglcilqckYvJdwz3PmDudeuzxc3GBIxD1lyJkpdSQTVSq4lqU8w5YaO75FuTdpqB3tet1_qrbr2vW091j8KrSYhjkA-PSWfrMdhjfO2i_87iE7-Sjhc</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Cai, Wei</creator><creator>Hu, Yang</creator><creator>Fang, Fang</creator><creator>Yao, Lujin</creator><creator>Liu, Jizhen</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9079-6978</orcidid><orcidid>https://orcid.org/0000-0002-6850-5211</orcidid><orcidid>https://orcid.org/0000-0003-1304-6932</orcidid></search><sort><creationdate>20230601</creationdate><title>Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines</title><author>Cai, Wei ; Hu, Yang ; Fang, Fang ; Yao, Lujin ; Liu, Jizhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-63470937d72408ce3f278ca0888ca4f9a8220de7fd97379e26c788c0e4b027393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>algorithms</topic><topic>energy</topic><topic>Multi-objective optimization</topic><topic>Partitioning algorithms</topic><topic>power generation</topic><topic>system optimization</topic><topic>topology</topic><topic>Wake effect</topic><topic>Wake redirection</topic><topic>wind</topic><topic>Wind farm</topic><topic>wind farms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Hu, Yang</creatorcontrib><creatorcontrib>Fang, Fang</creatorcontrib><creatorcontrib>Yao, Lujin</creatorcontrib><creatorcontrib>Liu, Jizhen</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Wei</au><au>Hu, Yang</au><au>Fang, Fang</au><au>Yao, Lujin</au><au>Liu, Jizhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines</atitle><jtitle>Applied energy</jtitle><date>2023-06-01</date><risdate>2023</risdate><volume>339</volume><spage>121000</spage><pages>121000-</pages><artnum>121000</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>Due to the wake effect, there is a high degree of coupling between wind turbines in a wind farm. In order to optimize the power and load performance of wind farms, it is crucial to propose an optimization strategy to attenuate the wake interference between wind turbines by wake redirection. This study proposes a wake interference model that can consider wake deflection based on the yawed wake model. Accordingly, the interference relationship between turbines is represented as the topology of the graph. By solving for the connected components of the graph, the wind farm is divided into almost uncoupled partitions. In each partition, separate optimization problems with the objectives of power enhancement and load reduction are established. An improved Non-Dominated Sorting Genetic Algorithm with multiple crossover operators is used for solving the multi-objective optimization problem. Simulation results show that the proposed strategy can effectively lead to power enhancement and load reduction for the regular layout wind farm. For the curvilinear layout wind farm with an optimized layout considering wake effects, proposed strategy can further reduce wake disturbances to improve the performance of wind farms. •Establish a wake interference model among wind turbines considering yaw angle.•Dynamic partitioning of wind turbines via clustering nodes of undirected graph.•Optimize power production and fatigue load based on wind farm wake redirection.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2023.121000</doi><orcidid>https://orcid.org/0000-0001-9079-6978</orcidid><orcidid>https://orcid.org/0000-0002-6850-5211</orcidid><orcidid>https://orcid.org/0000-0003-1304-6932</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2023-06, Vol.339, p.121000, Article 121000
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_2834247806
source Elsevier ScienceDirect Journals
subjects algorithms
energy
Multi-objective optimization
Partitioning algorithms
power generation
system optimization
topology
Wake effect
Wake redirection
wind
Wind farm
wind farms
title Wind farm power production and fatigue load optimization based on dynamic partitioning and wake redirection of wind turbines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20farm%20power%20production%20and%20fatigue%20load%20optimization%20based%20on%20dynamic%20partitioning%20and%20wake%20redirection%20of%20wind%20turbines&rft.jtitle=Applied%20energy&rft.au=Cai,%20Wei&rft.date=2023-06-01&rft.volume=339&rft.spage=121000&rft.pages=121000-&rft.artnum=121000&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2023.121000&rft_dat=%3Cproquest_cross%3E2834247806%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834247806&rft_id=info:pmid/&rft_els_id=S0306261923003641&rfr_iscdi=true