Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy

•OPTIR maps Tasmanites algal microfossils functional group distributions at 500 nm.•OPTIR data discriminate Tasmanites organic matter from adjacent solid bitumen.•First report using OTPIR to evaluate sedimentary organic matter structure. Elucidating the molecular structure of sedimentary organic mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Organic geochemistry 2023-03, Vol.177, p.104569, Article 104569
Hauptverfasser: Jubb, Aaron M., Rebecca Stokes, M., McAleer, Ryan J., Hackley, Paul C., Dillon, Eoghan, Qu, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 104569
container_title Organic geochemistry
container_volume 177
creator Jubb, Aaron M.
Rebecca Stokes, M.
McAleer, Ryan J.
Hackley, Paul C.
Dillon, Eoghan
Qu, Jing
description •OPTIR maps Tasmanites algal microfossils functional group distributions at 500 nm.•OPTIR data discriminate Tasmanites organic matter from adjacent solid bitumen.•First report using OTPIR to evaluate sedimentary organic matter structure. Elucidating the molecular structure of sedimentary organic matter (SOM) is key to understanding petroleum generation processes, as well as ancient sedimentary environments. SOM structure is primarily controlled by biogenic source material (e.g., marine vs. terrigenous), depositional conditions, and subsurface thermal history. Additional factors, e.g., strain, may also impact the molecular structure of SOM. Multiple spatially resolved approaches exist for in situ evaluation of SOM, including Raman and infrared spectroscopies, as well as mass spectrometric methods. While these methods have enabled increased understanding of the occurrence and distribution of SOM functional groups, they suffer from disadvantages including low spatial resolution (infrared spectroscopy), limited molecular information (Raman spectroscopy), and sample destruction (mass spectrometric methods). Recent technological advances have resulted in infrared spectrometers capable of breaking the Abbe diffraction limit, greatly increasing the spatial resolutions accessible for an infrared measurement. Here we utilize optical photothermal infrared spectroscopy (O-PTIR) to record maps of functional group distributions at 500 nm spatial resolution in Tasmanites (algal microfossils) from the Upper Devonian Ohio Shale. These data allow for discrimination between Tasmanites, adjacent SOM, and fine-grained minerals. Additionally, functional group distributions within Tasmanites were found to be generally homogenous, although slight variations exist between the body and fold apices (zones of greatest deformation) which may indicate strain-induced chemical reactions. The data presented here represent the first application of O-PTIR to study SOM, highlighting the promise of this analytical approach for future studies evaluating the molecular composition of geologic materials at sub-micron scales.
doi_str_mv 10.1016/j.orggeochem.2023.104569
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834221215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0146638023000153</els_id><sourcerecordid>2834221215</sourcerecordid><originalsourceid>FETCH-LOGICAL-a424t-d3ca8fa3da0c07870571a35dfd409a60c7bee2246d5add4336031d988dc4e43</originalsourceid><addsrcrecordid>eNqFkDlPAzEQhS0EEiHwH1zSbPC1R0qIuKQgCuitwZ5NHO2uF9uLlIL_jqMgUVLNoXlP8z5CKGcLznh1s1v4sNmgN1vsF4IJmdeqrJYnZMabWhalWLJTMmNcVUUlG3ZOLmLcMcZrrtiMfL_AOLphQ2EwDodEI1rX5wbCnmZnGJyhPaSEgfa-QzN1EGhMYTJpCkgh0QEGHw10GOkUD1Z-TC7PdNz65NMWQ58HN7QBAloaRzQpZIUf95fkrIUu4tVvnZO3h_v31VOxfn18Xt2uC1BCpcJKA00L0gIzrG5qVtYcZGlbq9gSKmbqD0QhVGVLsFZJWTHJ7bJprFGo5JxcH13H4D8njEn3LhrsOhjQT1GLRiohuOBlPm2OpyZ_GAO2egyuzyw0Z_rAW-_0H2994K2PvLP07ijFHOTLYdDxQNRkniEn1ta7_01-AO7BkvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834221215</pqid></control><display><type>article</type><title>Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jubb, Aaron M. ; Rebecca Stokes, M. ; McAleer, Ryan J. ; Hackley, Paul C. ; Dillon, Eoghan ; Qu, Jing</creator><creatorcontrib>Jubb, Aaron M. ; Rebecca Stokes, M. ; McAleer, Ryan J. ; Hackley, Paul C. ; Dillon, Eoghan ; Qu, Jing</creatorcontrib><description>•OPTIR maps Tasmanites algal microfossils functional group distributions at 500 nm.•OPTIR data discriminate Tasmanites organic matter from adjacent solid bitumen.•First report using OTPIR to evaluate sedimentary organic matter structure. Elucidating the molecular structure of sedimentary organic matter (SOM) is key to understanding petroleum generation processes, as well as ancient sedimentary environments. SOM structure is primarily controlled by biogenic source material (e.g., marine vs. terrigenous), depositional conditions, and subsurface thermal history. Additional factors, e.g., strain, may also impact the molecular structure of SOM. Multiple spatially resolved approaches exist for in situ evaluation of SOM, including Raman and infrared spectroscopies, as well as mass spectrometric methods. While these methods have enabled increased understanding of the occurrence and distribution of SOM functional groups, they suffer from disadvantages including low spatial resolution (infrared spectroscopy), limited molecular information (Raman spectroscopy), and sample destruction (mass spectrometric methods). Recent technological advances have resulted in infrared spectrometers capable of breaking the Abbe diffraction limit, greatly increasing the spatial resolutions accessible for an infrared measurement. Here we utilize optical photothermal infrared spectroscopy (O-PTIR) to record maps of functional group distributions at 500 nm spatial resolution in Tasmanites (algal microfossils) from the Upper Devonian Ohio Shale. These data allow for discrimination between Tasmanites, adjacent SOM, and fine-grained minerals. Additionally, functional group distributions within Tasmanites were found to be generally homogenous, although slight variations exist between the body and fold apices (zones of greatest deformation) which may indicate strain-induced chemical reactions. The data presented here represent the first application of O-PTIR to study SOM, highlighting the promise of this analytical approach for future studies evaluating the molecular composition of geologic materials at sub-micron scales.</description><identifier>ISSN: 0146-6380</identifier><identifier>EISSN: 1873-5290</identifier><identifier>DOI: 10.1016/j.orggeochem.2023.104569</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>algae ; Alginite ; chemical structure ; deformation ; Devonian period ; geochemistry ; infrared spectroscopy ; mass spectrometry ; microfossils ; Ohio ; Optical photothermal infrared spectroscopy ; Organic matter ; petroleum ; Raman spectroscopy ; Shale ; Tasmanites</subject><ispartof>Organic geochemistry, 2023-03, Vol.177, p.104569, Article 104569</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a424t-d3ca8fa3da0c07870571a35dfd409a60c7bee2246d5add4336031d988dc4e43</citedby><cites>FETCH-LOGICAL-a424t-d3ca8fa3da0c07870571a35dfd409a60c7bee2246d5add4336031d988dc4e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.orggeochem.2023.104569$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Jubb, Aaron M.</creatorcontrib><creatorcontrib>Rebecca Stokes, M.</creatorcontrib><creatorcontrib>McAleer, Ryan J.</creatorcontrib><creatorcontrib>Hackley, Paul C.</creatorcontrib><creatorcontrib>Dillon, Eoghan</creatorcontrib><creatorcontrib>Qu, Jing</creatorcontrib><title>Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy</title><title>Organic geochemistry</title><description>•OPTIR maps Tasmanites algal microfossils functional group distributions at 500 nm.•OPTIR data discriminate Tasmanites organic matter from adjacent solid bitumen.•First report using OTPIR to evaluate sedimentary organic matter structure. Elucidating the molecular structure of sedimentary organic matter (SOM) is key to understanding petroleum generation processes, as well as ancient sedimentary environments. SOM structure is primarily controlled by biogenic source material (e.g., marine vs. terrigenous), depositional conditions, and subsurface thermal history. Additional factors, e.g., strain, may also impact the molecular structure of SOM. Multiple spatially resolved approaches exist for in situ evaluation of SOM, including Raman and infrared spectroscopies, as well as mass spectrometric methods. While these methods have enabled increased understanding of the occurrence and distribution of SOM functional groups, they suffer from disadvantages including low spatial resolution (infrared spectroscopy), limited molecular information (Raman spectroscopy), and sample destruction (mass spectrometric methods). Recent technological advances have resulted in infrared spectrometers capable of breaking the Abbe diffraction limit, greatly increasing the spatial resolutions accessible for an infrared measurement. Here we utilize optical photothermal infrared spectroscopy (O-PTIR) to record maps of functional group distributions at 500 nm spatial resolution in Tasmanites (algal microfossils) from the Upper Devonian Ohio Shale. These data allow for discrimination between Tasmanites, adjacent SOM, and fine-grained minerals. Additionally, functional group distributions within Tasmanites were found to be generally homogenous, although slight variations exist between the body and fold apices (zones of greatest deformation) which may indicate strain-induced chemical reactions. The data presented here represent the first application of O-PTIR to study SOM, highlighting the promise of this analytical approach for future studies evaluating the molecular composition of geologic materials at sub-micron scales.</description><subject>algae</subject><subject>Alginite</subject><subject>chemical structure</subject><subject>deformation</subject><subject>Devonian period</subject><subject>geochemistry</subject><subject>infrared spectroscopy</subject><subject>mass spectrometry</subject><subject>microfossils</subject><subject>Ohio</subject><subject>Optical photothermal infrared spectroscopy</subject><subject>Organic matter</subject><subject>petroleum</subject><subject>Raman spectroscopy</subject><subject>Shale</subject><subject>Tasmanites</subject><issn>0146-6380</issn><issn>1873-5290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDlPAzEQhS0EEiHwH1zSbPC1R0qIuKQgCuitwZ5NHO2uF9uLlIL_jqMgUVLNoXlP8z5CKGcLznh1s1v4sNmgN1vsF4IJmdeqrJYnZMabWhalWLJTMmNcVUUlG3ZOLmLcMcZrrtiMfL_AOLphQ2EwDodEI1rX5wbCnmZnGJyhPaSEgfa-QzN1EGhMYTJpCkgh0QEGHw10GOkUD1Z-TC7PdNz65NMWQ58HN7QBAloaRzQpZIUf95fkrIUu4tVvnZO3h_v31VOxfn18Xt2uC1BCpcJKA00L0gIzrG5qVtYcZGlbq9gSKmbqD0QhVGVLsFZJWTHJ7bJprFGo5JxcH13H4D8njEn3LhrsOhjQT1GLRiohuOBlPm2OpyZ_GAO2egyuzyw0Z_rAW-_0H2994K2PvLP07ijFHOTLYdDxQNRkniEn1ta7_01-AO7BkvA</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Jubb, Aaron M.</creator><creator>Rebecca Stokes, M.</creator><creator>McAleer, Ryan J.</creator><creator>Hackley, Paul C.</creator><creator>Dillon, Eoghan</creator><creator>Qu, Jing</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>202303</creationdate><title>Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy</title><author>Jubb, Aaron M. ; Rebecca Stokes, M. ; McAleer, Ryan J. ; Hackley, Paul C. ; Dillon, Eoghan ; Qu, Jing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a424t-d3ca8fa3da0c07870571a35dfd409a60c7bee2246d5add4336031d988dc4e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>algae</topic><topic>Alginite</topic><topic>chemical structure</topic><topic>deformation</topic><topic>Devonian period</topic><topic>geochemistry</topic><topic>infrared spectroscopy</topic><topic>mass spectrometry</topic><topic>microfossils</topic><topic>Ohio</topic><topic>Optical photothermal infrared spectroscopy</topic><topic>Organic matter</topic><topic>petroleum</topic><topic>Raman spectroscopy</topic><topic>Shale</topic><topic>Tasmanites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jubb, Aaron M.</creatorcontrib><creatorcontrib>Rebecca Stokes, M.</creatorcontrib><creatorcontrib>McAleer, Ryan J.</creatorcontrib><creatorcontrib>Hackley, Paul C.</creatorcontrib><creatorcontrib>Dillon, Eoghan</creatorcontrib><creatorcontrib>Qu, Jing</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Organic geochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jubb, Aaron M.</au><au>Rebecca Stokes, M.</au><au>McAleer, Ryan J.</au><au>Hackley, Paul C.</au><au>Dillon, Eoghan</au><au>Qu, Jing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy</atitle><jtitle>Organic geochemistry</jtitle><date>2023-03</date><risdate>2023</risdate><volume>177</volume><spage>104569</spage><pages>104569-</pages><artnum>104569</artnum><issn>0146-6380</issn><eissn>1873-5290</eissn><abstract>•OPTIR maps Tasmanites algal microfossils functional group distributions at 500 nm.•OPTIR data discriminate Tasmanites organic matter from adjacent solid bitumen.•First report using OTPIR to evaluate sedimentary organic matter structure. Elucidating the molecular structure of sedimentary organic matter (SOM) is key to understanding petroleum generation processes, as well as ancient sedimentary environments. SOM structure is primarily controlled by biogenic source material (e.g., marine vs. terrigenous), depositional conditions, and subsurface thermal history. Additional factors, e.g., strain, may also impact the molecular structure of SOM. Multiple spatially resolved approaches exist for in situ evaluation of SOM, including Raman and infrared spectroscopies, as well as mass spectrometric methods. While these methods have enabled increased understanding of the occurrence and distribution of SOM functional groups, they suffer from disadvantages including low spatial resolution (infrared spectroscopy), limited molecular information (Raman spectroscopy), and sample destruction (mass spectrometric methods). Recent technological advances have resulted in infrared spectrometers capable of breaking the Abbe diffraction limit, greatly increasing the spatial resolutions accessible for an infrared measurement. Here we utilize optical photothermal infrared spectroscopy (O-PTIR) to record maps of functional group distributions at 500 nm spatial resolution in Tasmanites (algal microfossils) from the Upper Devonian Ohio Shale. These data allow for discrimination between Tasmanites, adjacent SOM, and fine-grained minerals. Additionally, functional group distributions within Tasmanites were found to be generally homogenous, although slight variations exist between the body and fold apices (zones of greatest deformation) which may indicate strain-induced chemical reactions. The data presented here represent the first application of O-PTIR to study SOM, highlighting the promise of this analytical approach for future studies evaluating the molecular composition of geologic materials at sub-micron scales.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.orggeochem.2023.104569</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0146-6380
ispartof Organic geochemistry, 2023-03, Vol.177, p.104569, Article 104569
issn 0146-6380
1873-5290
language eng
recordid cdi_proquest_miscellaneous_2834221215
source Elsevier ScienceDirect Journals Complete
subjects algae
Alginite
chemical structure
deformation
Devonian period
geochemistry
infrared spectroscopy
mass spectrometry
microfossils
Ohio
Optical photothermal infrared spectroscopy
Organic matter
petroleum
Raman spectroscopy
Shale
Tasmanites
title Mapping ancient sedimentary organic matter molecular structure at nanoscales using optical photothermal infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A03%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20ancient%20sedimentary%20organic%20matter%20molecular%20structure%20at%20nanoscales%20using%20optical%20photothermal%20infrared%20spectroscopy&rft.jtitle=Organic%20geochemistry&rft.au=Jubb,%20Aaron%20M.&rft.date=2023-03&rft.volume=177&rft.spage=104569&rft.pages=104569-&rft.artnum=104569&rft.issn=0146-6380&rft.eissn=1873-5290&rft_id=info:doi/10.1016/j.orggeochem.2023.104569&rft_dat=%3Cproquest_cross%3E2834221215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834221215&rft_id=info:pmid/&rft_els_id=S0146638023000153&rfr_iscdi=true