An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update

Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied energy 2023-06, Vol.340, p.121049, Article 121049
Hauptverfasser: Liu, Ling, Wang, Jujie, Li, Jianping, Wei, Lu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 121049
container_title Applied energy
container_volume 340
creator Liu, Ling
Wang, Jujie
Li, Jianping
Wei, Lu
description Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomings. To improve the multi-source data fusion accuracy, a new time trend quantification method is applied to expand the data source, a convolutional neural network multi-source data fusion method is proposed to reduce the dimension of data, and a Hilbert spatial feature construction method is used to construct spatial information of data. To achieve system-wide update and rapid prediction, we have deleted the weight unit of traditional method and added two data buffers. The results show that: (1) the proposed multi-source data processing method has the smallest mapping errors, which mean absolute error for all wind turbines is less than 32.1; (2) the proposed online transfer learning model has the highest prediction accuracy, which is higher than 92.5%. •New system-wide update online transfer learning model.•New time trend quantification method for wind turbine power.•New Hilbert spatial feature construction method.•Multi-source data fusion method base on convolutional neural network.•Rapid prediction method by separating update and prediction processes.
doi_str_mv 10.1016/j.apenergy.2023.121049
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834215414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0306261923004130</els_id><sourcerecordid>2834215414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-8901428ce05caac0017b5f504acf357ac7fb74b2ceefe02fb2ef46f3646658cf3</originalsourceid><addsrcrecordid>eNqFkDtPwzAURi0EEuXxF5BHlpRrx3l0AyFeUiUWmC3HuUauUjvYDlU3fjquAjPTXc53pHsIuWKwZMDqm81SjegwfOyXHHi5ZJyBWB2RBWsbXqwYa4_JAkqoC16z1Sk5i3EDAJxxWJDvO0e9G6xDmoJy0WCgA6rgrPugW9_jQI0PdGddT9MUugM4-l2mxoC91cl6RzsVsc8aGkeVrMoTVBlGqr2LKUwzpbIi7mPCbbGzPdJp7FXCC3Ji1BDx8veek_fHh7f752L9-vRyf7cudCmqVLQrYIK3GqHSSmkA1nSVqUAobcqqUboxXSM6rhENAjcdRyNqU9airqs2M-fkevaOwX9OGJPc2qhxGJRDP0XJ21JwVgkmMlrPqA4-xoBGjsFuVdhLBvKQXG7kX3J5SC7n5Hl4Ow8xP_JlMcioLTqdQwXUSfbe_qf4AaAVkU0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834215414</pqid></control><display><type>article</type><title>An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Ling ; Wang, Jujie ; Li, Jianping ; Wei, Lu</creator><creatorcontrib>Liu, Ling ; Wang, Jujie ; Li, Jianping ; Wei, Lu</creatorcontrib><description>Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomings. To improve the multi-source data fusion accuracy, a new time trend quantification method is applied to expand the data source, a convolutional neural network multi-source data fusion method is proposed to reduce the dimension of data, and a Hilbert spatial feature construction method is used to construct spatial information of data. To achieve system-wide update and rapid prediction, we have deleted the weight unit of traditional method and added two data buffers. The results show that: (1) the proposed multi-source data processing method has the smallest mapping errors, which mean absolute error for all wind turbines is less than 32.1; (2) the proposed online transfer learning model has the highest prediction accuracy, which is higher than 92.5%. •New system-wide update online transfer learning model.•New time trend quantification method for wind turbine power.•New Hilbert spatial feature construction method.•Multi-source data fusion method base on convolutional neural network.•Rapid prediction method by separating update and prediction processes.</description><identifier>ISSN: 0306-2619</identifier><identifier>EISSN: 1872-9118</identifier><identifier>DOI: 10.1016/j.apenergy.2023.121049</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>energy ; neural networks ; Online update ; prediction ; spatial data ; Transfer learning ; wind ; Wind turbine power ; wind turbines</subject><ispartof>Applied energy, 2023-06, Vol.340, p.121049, Article 121049</ispartof><rights>2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-8901428ce05caac0017b5f504acf357ac7fb74b2ceefe02fb2ef46f3646658cf3</citedby><cites>FETCH-LOGICAL-c345t-8901428ce05caac0017b5f504acf357ac7fb74b2ceefe02fb2ef46f3646658cf3</cites><orcidid>0000-0001-9190-1629 ; 0000-0003-4976-4119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0306261923004130$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids></links><search><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Wang, Jujie</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Wei, Lu</creatorcontrib><title>An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update</title><title>Applied energy</title><description>Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomings. To improve the multi-source data fusion accuracy, a new time trend quantification method is applied to expand the data source, a convolutional neural network multi-source data fusion method is proposed to reduce the dimension of data, and a Hilbert spatial feature construction method is used to construct spatial information of data. To achieve system-wide update and rapid prediction, we have deleted the weight unit of traditional method and added two data buffers. The results show that: (1) the proposed multi-source data processing method has the smallest mapping errors, which mean absolute error for all wind turbines is less than 32.1; (2) the proposed online transfer learning model has the highest prediction accuracy, which is higher than 92.5%. •New system-wide update online transfer learning model.•New time trend quantification method for wind turbine power.•New Hilbert spatial feature construction method.•Multi-source data fusion method base on convolutional neural network.•Rapid prediction method by separating update and prediction processes.</description><subject>energy</subject><subject>neural networks</subject><subject>Online update</subject><subject>prediction</subject><subject>spatial data</subject><subject>Transfer learning</subject><subject>wind</subject><subject>Wind turbine power</subject><subject>wind turbines</subject><issn>0306-2619</issn><issn>1872-9118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAURi0EEuXxF5BHlpRrx3l0AyFeUiUWmC3HuUauUjvYDlU3fjquAjPTXc53pHsIuWKwZMDqm81SjegwfOyXHHi5ZJyBWB2RBWsbXqwYa4_JAkqoC16z1Sk5i3EDAJxxWJDvO0e9G6xDmoJy0WCgA6rgrPugW9_jQI0PdGddT9MUugM4-l2mxoC91cl6RzsVsc8aGkeVrMoTVBlGqr2LKUwzpbIi7mPCbbGzPdJp7FXCC3Ji1BDx8veek_fHh7f752L9-vRyf7cudCmqVLQrYIK3GqHSSmkA1nSVqUAobcqqUboxXSM6rhENAjcdRyNqU9airqs2M-fkevaOwX9OGJPc2qhxGJRDP0XJ21JwVgkmMlrPqA4-xoBGjsFuVdhLBvKQXG7kX3J5SC7n5Hl4Ow8xP_JlMcioLTqdQwXUSfbe_qf4AaAVkU0</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Liu, Ling</creator><creator>Wang, Jujie</creator><creator>Li, Jianping</creator><creator>Wei, Lu</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0001-9190-1629</orcidid><orcidid>https://orcid.org/0000-0003-4976-4119</orcidid></search><sort><creationdate>20230615</creationdate><title>An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update</title><author>Liu, Ling ; Wang, Jujie ; Li, Jianping ; Wei, Lu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-8901428ce05caac0017b5f504acf357ac7fb74b2ceefe02fb2ef46f3646658cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>energy</topic><topic>neural networks</topic><topic>Online update</topic><topic>prediction</topic><topic>spatial data</topic><topic>Transfer learning</topic><topic>wind</topic><topic>Wind turbine power</topic><topic>wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ling</creatorcontrib><creatorcontrib>Wang, Jujie</creatorcontrib><creatorcontrib>Li, Jianping</creatorcontrib><creatorcontrib>Wei, Lu</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Applied energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ling</au><au>Wang, Jujie</au><au>Li, Jianping</au><au>Wei, Lu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update</atitle><jtitle>Applied energy</jtitle><date>2023-06-15</date><risdate>2023</risdate><volume>340</volume><spage>121049</spage><pages>121049-</pages><artnum>121049</artnum><issn>0306-2619</issn><eissn>1872-9118</eissn><abstract>Accurate prediction of wind turbine power is important for the safe operation of wind farms. However, most of the previous online transfer learning methods are partially updated and time-consuming. Here we propose a novel system-wide update online transfer learning model to overcome these shortcomings. To improve the multi-source data fusion accuracy, a new time trend quantification method is applied to expand the data source, a convolutional neural network multi-source data fusion method is proposed to reduce the dimension of data, and a Hilbert spatial feature construction method is used to construct spatial information of data. To achieve system-wide update and rapid prediction, we have deleted the weight unit of traditional method and added two data buffers. The results show that: (1) the proposed multi-source data processing method has the smallest mapping errors, which mean absolute error for all wind turbines is less than 32.1; (2) the proposed online transfer learning model has the highest prediction accuracy, which is higher than 92.5%. •New system-wide update online transfer learning model.•New time trend quantification method for wind turbine power.•New Hilbert spatial feature construction method.•Multi-source data fusion method base on convolutional neural network.•Rapid prediction method by separating update and prediction processes.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.apenergy.2023.121049</doi><orcidid>https://orcid.org/0000-0001-9190-1629</orcidid><orcidid>https://orcid.org/0000-0003-4976-4119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-2619
ispartof Applied energy, 2023-06, Vol.340, p.121049, Article 121049
issn 0306-2619
1872-9118
language eng
recordid cdi_proquest_miscellaneous_2834215414
source Elsevier ScienceDirect Journals
subjects energy
neural networks
Online update
prediction
spatial data
Transfer learning
wind
Wind turbine power
wind turbines
title An online transfer learning model for wind turbine power prediction based on spatial feature construction and system-wide update
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T09%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20online%20transfer%20learning%20model%20for%20wind%20turbine%20power%20prediction%20based%20on%20spatial%20feature%20construction%20and%20system-wide%20update&rft.jtitle=Applied%20energy&rft.au=Liu,%20Ling&rft.date=2023-06-15&rft.volume=340&rft.spage=121049&rft.pages=121049-&rft.artnum=121049&rft.issn=0306-2619&rft.eissn=1872-9118&rft_id=info:doi/10.1016/j.apenergy.2023.121049&rft_dat=%3Cproquest_cross%3E2834215414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834215414&rft_id=info:pmid/&rft_els_id=S0306261923004130&rfr_iscdi=true