Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury
Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem c...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2023-06, Vol.297, p.122103-122103, Article 122103 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122103 |
---|---|
container_issue | |
container_start_page | 122103 |
container_title | Biomaterials |
container_volume | 297 |
creator | Lai, Bi-Qin Wu, Rong-Jie Han, Wei-Tao Bai, Yu-Rong Liu, Jia-Lin Yu, Hai-Yang Yang, Shang-Bin Wang, Lai-Jian Ren, Jia-Le Ding, Ying Li, Ge Zeng, Xiang Ma, Yuan-Huan Quan, Qi Xing, Ling-Yan Jiang, Bin Wang, Ya-Qiong Zhang, Ling Chen, Zheng-Hong Zhang, Hong-Bo Chen, Yuan-Feng Zheng, Qiu-Jian Zeng, Yuan-Shan |
description | Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles. |
doi_str_mv | 10.1016/j.biomaterials.2023.122103 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834214799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961223001114</els_id><sourcerecordid>2798710846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</originalsourceid><addsrcrecordid>eNqNUcuO1DAQtBCIHRZ-AVmcuGRwO5k44YaWp7QSl-Vs9TgdbQ9JHGxn0Xwc_4ZnsiA4wcm2uh7tKiFegNqCgvrVYbtnP2KiwDjErVa63ILWoMoHYgONaYpdq3YPxUZBpYu2Bn0hnsR4UPmtKv1YXJRG6QYANuLHDfIgJwp3JGkglwI7HGRMPC4DJvaTnIMffaJOptuM6Xt2TJM7St_LFHCK84DTaRxnnjLV-dAVA38lmTjGhSRGidlhCf40DjTgUSafLzNyOItmeR9kv0zubJiFA6Yov3O6XS3yXn8bSJ4OSzg-FY_6HAE9uz8vxZf3726uPhbXnz98unpzXbgKylS4uut1q4zRxiiqG9wBIdRQElC3aw1qMFC5HMpeETZYNa6ldldin0PtVVdeiperbs7i20Ix2ZGjoyH_nPwSrW7KSkNl2vbfUNM2BlRT1Rn6eoW64GMM1Ns58IjhaEHZU9P2YP9s2p6atmvTmfz83mfZj9T9pv6qNgPergDKwdwxBRvPxVHHIedpO8__4_MTzzjFZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798710846</pqid></control><display><type>article</type><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</creator><creatorcontrib>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</creatorcontrib><description>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2023.122103</identifier><identifier>PMID: 37028111</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>animal injuries ; animal models ; Animals ; Axons - physiology ; biocompatible materials ; Electric Stimulation ; electrical treatment ; energy metabolism ; hindlimbs ; innervation ; mitochondria ; Motor Neurons - physiology ; muscle tissues ; muscles ; muscular atrophy ; Nerve Regeneration - physiology ; nerve tissue ; neural stem cells ; neurons ; Rats ; Recovery of Function - physiology ; Spinal Cord ; Spinal Cord Injuries - therapy ; Spinal Cord Regeneration ; Spinal cord-like tissue ; synergism ; Synergistic electrical stimulation ; Tail ; Transected spinal cord injury ; Transplantation ; Voluntary motor function recovery</subject><ispartof>Biomaterials, 2023-06, Vol.297, p.122103-122103, Article 122103</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</citedby><cites>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</cites><orcidid>0000-0003-3804-5792 ; 0000-0003-4577-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961223001114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Bi-Qin</creatorcontrib><creatorcontrib>Wu, Rong-Jie</creatorcontrib><creatorcontrib>Han, Wei-Tao</creatorcontrib><creatorcontrib>Bai, Yu-Rong</creatorcontrib><creatorcontrib>Liu, Jia-Lin</creatorcontrib><creatorcontrib>Yu, Hai-Yang</creatorcontrib><creatorcontrib>Yang, Shang-Bin</creatorcontrib><creatorcontrib>Wang, Lai-Jian</creatorcontrib><creatorcontrib>Ren, Jia-Le</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Ma, Yuan-Huan</creatorcontrib><creatorcontrib>Quan, Qi</creatorcontrib><creatorcontrib>Xing, Ling-Yan</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Ya-Qiong</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Zheng-Hong</creatorcontrib><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Chen, Yuan-Feng</creatorcontrib><creatorcontrib>Zheng, Qiu-Jian</creatorcontrib><creatorcontrib>Zeng, Yuan-Shan</creatorcontrib><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</description><subject>animal injuries</subject><subject>animal models</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>biocompatible materials</subject><subject>Electric Stimulation</subject><subject>electrical treatment</subject><subject>energy metabolism</subject><subject>hindlimbs</subject><subject>innervation</subject><subject>mitochondria</subject><subject>Motor Neurons - physiology</subject><subject>muscle tissues</subject><subject>muscles</subject><subject>muscular atrophy</subject><subject>Nerve Regeneration - physiology</subject><subject>nerve tissue</subject><subject>neural stem cells</subject><subject>neurons</subject><subject>Rats</subject><subject>Recovery of Function - physiology</subject><subject>Spinal Cord</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Spinal Cord Regeneration</subject><subject>Spinal cord-like tissue</subject><subject>synergism</subject><subject>Synergistic electrical stimulation</subject><subject>Tail</subject><subject>Transected spinal cord injury</subject><subject>Transplantation</subject><subject>Voluntary motor function recovery</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuO1DAQtBCIHRZ-AVmcuGRwO5k44YaWp7QSl-Vs9TgdbQ9JHGxn0Xwc_4ZnsiA4wcm2uh7tKiFegNqCgvrVYbtnP2KiwDjErVa63ILWoMoHYgONaYpdq3YPxUZBpYu2Bn0hnsR4UPmtKv1YXJRG6QYANuLHDfIgJwp3JGkglwI7HGRMPC4DJvaTnIMffaJOptuM6Xt2TJM7St_LFHCK84DTaRxnnjLV-dAVA38lmTjGhSRGidlhCf40DjTgUSafLzNyOItmeR9kv0zubJiFA6Yov3O6XS3yXn8bSJ4OSzg-FY_6HAE9uz8vxZf3726uPhbXnz98unpzXbgKylS4uut1q4zRxiiqG9wBIdRQElC3aw1qMFC5HMpeETZYNa6ldldin0PtVVdeiperbs7i20Ix2ZGjoyH_nPwSrW7KSkNl2vbfUNM2BlRT1Rn6eoW64GMM1Ns58IjhaEHZU9P2YP9s2p6atmvTmfz83mfZj9T9pv6qNgPergDKwdwxBRvPxVHHIedpO8__4_MTzzjFZw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Lai, Bi-Qin</creator><creator>Wu, Rong-Jie</creator><creator>Han, Wei-Tao</creator><creator>Bai, Yu-Rong</creator><creator>Liu, Jia-Lin</creator><creator>Yu, Hai-Yang</creator><creator>Yang, Shang-Bin</creator><creator>Wang, Lai-Jian</creator><creator>Ren, Jia-Le</creator><creator>Ding, Ying</creator><creator>Li, Ge</creator><creator>Zeng, Xiang</creator><creator>Ma, Yuan-Huan</creator><creator>Quan, Qi</creator><creator>Xing, Ling-Yan</creator><creator>Jiang, Bin</creator><creator>Wang, Ya-Qiong</creator><creator>Zhang, Ling</creator><creator>Chen, Zheng-Hong</creator><creator>Zhang, Hong-Bo</creator><creator>Chen, Yuan-Feng</creator><creator>Zheng, Qiu-Jian</creator><creator>Zeng, Yuan-Shan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3804-5792</orcidid><orcidid>https://orcid.org/0000-0003-4577-749X</orcidid></search><sort><creationdate>202306</creationdate><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><author>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>animal injuries</topic><topic>animal models</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>biocompatible materials</topic><topic>Electric Stimulation</topic><topic>electrical treatment</topic><topic>energy metabolism</topic><topic>hindlimbs</topic><topic>innervation</topic><topic>mitochondria</topic><topic>Motor Neurons - physiology</topic><topic>muscle tissues</topic><topic>muscles</topic><topic>muscular atrophy</topic><topic>Nerve Regeneration - physiology</topic><topic>nerve tissue</topic><topic>neural stem cells</topic><topic>neurons</topic><topic>Rats</topic><topic>Recovery of Function - physiology</topic><topic>Spinal Cord</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Spinal Cord Regeneration</topic><topic>Spinal cord-like tissue</topic><topic>synergism</topic><topic>Synergistic electrical stimulation</topic><topic>Tail</topic><topic>Transected spinal cord injury</topic><topic>Transplantation</topic><topic>Voluntary motor function recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Bi-Qin</creatorcontrib><creatorcontrib>Wu, Rong-Jie</creatorcontrib><creatorcontrib>Han, Wei-Tao</creatorcontrib><creatorcontrib>Bai, Yu-Rong</creatorcontrib><creatorcontrib>Liu, Jia-Lin</creatorcontrib><creatorcontrib>Yu, Hai-Yang</creatorcontrib><creatorcontrib>Yang, Shang-Bin</creatorcontrib><creatorcontrib>Wang, Lai-Jian</creatorcontrib><creatorcontrib>Ren, Jia-Le</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Ma, Yuan-Huan</creatorcontrib><creatorcontrib>Quan, Qi</creatorcontrib><creatorcontrib>Xing, Ling-Yan</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Ya-Qiong</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Zheng-Hong</creatorcontrib><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Chen, Yuan-Feng</creatorcontrib><creatorcontrib>Zheng, Qiu-Jian</creatorcontrib><creatorcontrib>Zeng, Yuan-Shan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Bi-Qin</au><au>Wu, Rong-Jie</au><au>Han, Wei-Tao</au><au>Bai, Yu-Rong</au><au>Liu, Jia-Lin</au><au>Yu, Hai-Yang</au><au>Yang, Shang-Bin</au><au>Wang, Lai-Jian</au><au>Ren, Jia-Le</au><au>Ding, Ying</au><au>Li, Ge</au><au>Zeng, Xiang</au><au>Ma, Yuan-Huan</au><au>Quan, Qi</au><au>Xing, Ling-Yan</au><au>Jiang, Bin</au><au>Wang, Ya-Qiong</au><au>Zhang, Ling</au><au>Chen, Zheng-Hong</au><au>Zhang, Hong-Bo</au><au>Chen, Yuan-Feng</au><au>Zheng, Qiu-Jian</au><au>Zeng, Yuan-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-06</date><risdate>2023</risdate><volume>297</volume><spage>122103</spage><epage>122103</epage><pages>122103-122103</pages><artnum>122103</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37028111</pmid><doi>10.1016/j.biomaterials.2023.122103</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3804-5792</orcidid><orcidid>https://orcid.org/0000-0003-4577-749X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2023-06, Vol.297, p.122103-122103, Article 122103 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_2834214799 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | animal injuries animal models Animals Axons - physiology biocompatible materials Electric Stimulation electrical treatment energy metabolism hindlimbs innervation mitochondria Motor Neurons - physiology muscle tissues muscles muscular atrophy Nerve Regeneration - physiology nerve tissue neural stem cells neurons Rats Recovery of Function - physiology Spinal Cord Spinal Cord Injuries - therapy Spinal Cord Regeneration Spinal cord-like tissue synergism Synergistic electrical stimulation Tail Transected spinal cord injury Transplantation Voluntary motor function recovery |
title | Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20nerve%20electrical%20stimulation%20promoted%20the%20efficiency%20of%20transplanted%20spinal%20cord-like%20tissue%20as%20a%20neuronal%20relay%20to%20repair%20the%20motor%20function%20of%20rats%20with%20transected%20spinal%20cord%20injury&rft.jtitle=Biomaterials&rft.au=Lai,%20Bi-Qin&rft.date=2023-06&rft.volume=297&rft.spage=122103&rft.epage=122103&rft.pages=122103-122103&rft.artnum=122103&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2023.122103&rft_dat=%3Cproquest_cross%3E2798710846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798710846&rft_id=info:pmid/37028111&rft_els_id=S0142961223001114&rfr_iscdi=true |