Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury

Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2023-06, Vol.297, p.122103-122103, Article 122103
Hauptverfasser: Lai, Bi-Qin, Wu, Rong-Jie, Han, Wei-Tao, Bai, Yu-Rong, Liu, Jia-Lin, Yu, Hai-Yang, Yang, Shang-Bin, Wang, Lai-Jian, Ren, Jia-Le, Ding, Ying, Li, Ge, Zeng, Xiang, Ma, Yuan-Huan, Quan, Qi, Xing, Ling-Yan, Jiang, Bin, Wang, Ya-Qiong, Zhang, Ling, Chen, Zheng-Hong, Zhang, Hong-Bo, Chen, Yuan-Feng, Zheng, Qiu-Jian, Zeng, Yuan-Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122103
container_issue
container_start_page 122103
container_title Biomaterials
container_volume 297
creator Lai, Bi-Qin
Wu, Rong-Jie
Han, Wei-Tao
Bai, Yu-Rong
Liu, Jia-Lin
Yu, Hai-Yang
Yang, Shang-Bin
Wang, Lai-Jian
Ren, Jia-Le
Ding, Ying
Li, Ge
Zeng, Xiang
Ma, Yuan-Huan
Quan, Qi
Xing, Ling-Yan
Jiang, Bin
Wang, Ya-Qiong
Zhang, Ling
Chen, Zheng-Hong
Zhang, Hong-Bo
Chen, Yuan-Feng
Zheng, Qiu-Jian
Zeng, Yuan-Shan
description Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.
doi_str_mv 10.1016/j.biomaterials.2023.122103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2834214799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961223001114</els_id><sourcerecordid>2798710846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</originalsourceid><addsrcrecordid>eNqNUcuO1DAQtBCIHRZ-AVmcuGRwO5k44YaWp7QSl-Vs9TgdbQ9JHGxn0Xwc_4ZnsiA4wcm2uh7tKiFegNqCgvrVYbtnP2KiwDjErVa63ILWoMoHYgONaYpdq3YPxUZBpYu2Bn0hnsR4UPmtKv1YXJRG6QYANuLHDfIgJwp3JGkglwI7HGRMPC4DJvaTnIMffaJOptuM6Xt2TJM7St_LFHCK84DTaRxnnjLV-dAVA38lmTjGhSRGidlhCf40DjTgUSafLzNyOItmeR9kv0zubJiFA6Yov3O6XS3yXn8bSJ4OSzg-FY_6HAE9uz8vxZf3726uPhbXnz98unpzXbgKylS4uut1q4zRxiiqG9wBIdRQElC3aw1qMFC5HMpeETZYNa6ldldin0PtVVdeiperbs7i20Ix2ZGjoyH_nPwSrW7KSkNl2vbfUNM2BlRT1Rn6eoW64GMM1Ns58IjhaEHZU9P2YP9s2p6atmvTmfz83mfZj9T9pv6qNgPergDKwdwxBRvPxVHHIedpO8__4_MTzzjFZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2798710846</pqid></control><display><type>article</type><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</creator><creatorcontrib>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</creatorcontrib><description>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2023.122103</identifier><identifier>PMID: 37028111</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>animal injuries ; animal models ; Animals ; Axons - physiology ; biocompatible materials ; Electric Stimulation ; electrical treatment ; energy metabolism ; hindlimbs ; innervation ; mitochondria ; Motor Neurons - physiology ; muscle tissues ; muscles ; muscular atrophy ; Nerve Regeneration - physiology ; nerve tissue ; neural stem cells ; neurons ; Rats ; Recovery of Function - physiology ; Spinal Cord ; Spinal Cord Injuries - therapy ; Spinal Cord Regeneration ; Spinal cord-like tissue ; synergism ; Synergistic electrical stimulation ; Tail ; Transected spinal cord injury ; Transplantation ; Voluntary motor function recovery</subject><ispartof>Biomaterials, 2023-06, Vol.297, p.122103-122103, Article 122103</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</citedby><cites>FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</cites><orcidid>0000-0003-3804-5792 ; 0000-0003-4577-749X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961223001114$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37028111$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Bi-Qin</creatorcontrib><creatorcontrib>Wu, Rong-Jie</creatorcontrib><creatorcontrib>Han, Wei-Tao</creatorcontrib><creatorcontrib>Bai, Yu-Rong</creatorcontrib><creatorcontrib>Liu, Jia-Lin</creatorcontrib><creatorcontrib>Yu, Hai-Yang</creatorcontrib><creatorcontrib>Yang, Shang-Bin</creatorcontrib><creatorcontrib>Wang, Lai-Jian</creatorcontrib><creatorcontrib>Ren, Jia-Le</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Ma, Yuan-Huan</creatorcontrib><creatorcontrib>Quan, Qi</creatorcontrib><creatorcontrib>Xing, Ling-Yan</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Ya-Qiong</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Zheng-Hong</creatorcontrib><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Chen, Yuan-Feng</creatorcontrib><creatorcontrib>Zheng, Qiu-Jian</creatorcontrib><creatorcontrib>Zeng, Yuan-Shan</creatorcontrib><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</description><subject>animal injuries</subject><subject>animal models</subject><subject>Animals</subject><subject>Axons - physiology</subject><subject>biocompatible materials</subject><subject>Electric Stimulation</subject><subject>electrical treatment</subject><subject>energy metabolism</subject><subject>hindlimbs</subject><subject>innervation</subject><subject>mitochondria</subject><subject>Motor Neurons - physiology</subject><subject>muscle tissues</subject><subject>muscles</subject><subject>muscular atrophy</subject><subject>Nerve Regeneration - physiology</subject><subject>nerve tissue</subject><subject>neural stem cells</subject><subject>neurons</subject><subject>Rats</subject><subject>Recovery of Function - physiology</subject><subject>Spinal Cord</subject><subject>Spinal Cord Injuries - therapy</subject><subject>Spinal Cord Regeneration</subject><subject>Spinal cord-like tissue</subject><subject>synergism</subject><subject>Synergistic electrical stimulation</subject><subject>Tail</subject><subject>Transected spinal cord injury</subject><subject>Transplantation</subject><subject>Voluntary motor function recovery</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNUcuO1DAQtBCIHRZ-AVmcuGRwO5k44YaWp7QSl-Vs9TgdbQ9JHGxn0Xwc_4ZnsiA4wcm2uh7tKiFegNqCgvrVYbtnP2KiwDjErVa63ILWoMoHYgONaYpdq3YPxUZBpYu2Bn0hnsR4UPmtKv1YXJRG6QYANuLHDfIgJwp3JGkglwI7HGRMPC4DJvaTnIMffaJOptuM6Xt2TJM7St_LFHCK84DTaRxnnjLV-dAVA38lmTjGhSRGidlhCf40DjTgUSafLzNyOItmeR9kv0zubJiFA6Yov3O6XS3yXn8bSJ4OSzg-FY_6HAE9uz8vxZf3726uPhbXnz98unpzXbgKylS4uut1q4zRxiiqG9wBIdRQElC3aw1qMFC5HMpeETZYNa6ldldin0PtVVdeiperbs7i20Ix2ZGjoyH_nPwSrW7KSkNl2vbfUNM2BlRT1Rn6eoW64GMM1Ns58IjhaEHZU9P2YP9s2p6atmvTmfz83mfZj9T9pv6qNgPergDKwdwxBRvPxVHHIedpO8__4_MTzzjFZw</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Lai, Bi-Qin</creator><creator>Wu, Rong-Jie</creator><creator>Han, Wei-Tao</creator><creator>Bai, Yu-Rong</creator><creator>Liu, Jia-Lin</creator><creator>Yu, Hai-Yang</creator><creator>Yang, Shang-Bin</creator><creator>Wang, Lai-Jian</creator><creator>Ren, Jia-Le</creator><creator>Ding, Ying</creator><creator>Li, Ge</creator><creator>Zeng, Xiang</creator><creator>Ma, Yuan-Huan</creator><creator>Quan, Qi</creator><creator>Xing, Ling-Yan</creator><creator>Jiang, Bin</creator><creator>Wang, Ya-Qiong</creator><creator>Zhang, Ling</creator><creator>Chen, Zheng-Hong</creator><creator>Zhang, Hong-Bo</creator><creator>Chen, Yuan-Feng</creator><creator>Zheng, Qiu-Jian</creator><creator>Zeng, Yuan-Shan</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-3804-5792</orcidid><orcidid>https://orcid.org/0000-0003-4577-749X</orcidid></search><sort><creationdate>202306</creationdate><title>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</title><author>Lai, Bi-Qin ; Wu, Rong-Jie ; Han, Wei-Tao ; Bai, Yu-Rong ; Liu, Jia-Lin ; Yu, Hai-Yang ; Yang, Shang-Bin ; Wang, Lai-Jian ; Ren, Jia-Le ; Ding, Ying ; Li, Ge ; Zeng, Xiang ; Ma, Yuan-Huan ; Quan, Qi ; Xing, Ling-Yan ; Jiang, Bin ; Wang, Ya-Qiong ; Zhang, Ling ; Chen, Zheng-Hong ; Zhang, Hong-Bo ; Chen, Yuan-Feng ; Zheng, Qiu-Jian ; Zeng, Yuan-Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-c6df290772770e68a51ea1613e1ed597a21714c702b0ea8a48c9e953af210f0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>animal injuries</topic><topic>animal models</topic><topic>Animals</topic><topic>Axons - physiology</topic><topic>biocompatible materials</topic><topic>Electric Stimulation</topic><topic>electrical treatment</topic><topic>energy metabolism</topic><topic>hindlimbs</topic><topic>innervation</topic><topic>mitochondria</topic><topic>Motor Neurons - physiology</topic><topic>muscle tissues</topic><topic>muscles</topic><topic>muscular atrophy</topic><topic>Nerve Regeneration - physiology</topic><topic>nerve tissue</topic><topic>neural stem cells</topic><topic>neurons</topic><topic>Rats</topic><topic>Recovery of Function - physiology</topic><topic>Spinal Cord</topic><topic>Spinal Cord Injuries - therapy</topic><topic>Spinal Cord Regeneration</topic><topic>Spinal cord-like tissue</topic><topic>synergism</topic><topic>Synergistic electrical stimulation</topic><topic>Tail</topic><topic>Transected spinal cord injury</topic><topic>Transplantation</topic><topic>Voluntary motor function recovery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Bi-Qin</creatorcontrib><creatorcontrib>Wu, Rong-Jie</creatorcontrib><creatorcontrib>Han, Wei-Tao</creatorcontrib><creatorcontrib>Bai, Yu-Rong</creatorcontrib><creatorcontrib>Liu, Jia-Lin</creatorcontrib><creatorcontrib>Yu, Hai-Yang</creatorcontrib><creatorcontrib>Yang, Shang-Bin</creatorcontrib><creatorcontrib>Wang, Lai-Jian</creatorcontrib><creatorcontrib>Ren, Jia-Le</creatorcontrib><creatorcontrib>Ding, Ying</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Zeng, Xiang</creatorcontrib><creatorcontrib>Ma, Yuan-Huan</creatorcontrib><creatorcontrib>Quan, Qi</creatorcontrib><creatorcontrib>Xing, Ling-Yan</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Wang, Ya-Qiong</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Chen, Zheng-Hong</creatorcontrib><creatorcontrib>Zhang, Hong-Bo</creatorcontrib><creatorcontrib>Chen, Yuan-Feng</creatorcontrib><creatorcontrib>Zheng, Qiu-Jian</creatorcontrib><creatorcontrib>Zeng, Yuan-Shan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Bi-Qin</au><au>Wu, Rong-Jie</au><au>Han, Wei-Tao</au><au>Bai, Yu-Rong</au><au>Liu, Jia-Lin</au><au>Yu, Hai-Yang</au><au>Yang, Shang-Bin</au><au>Wang, Lai-Jian</au><au>Ren, Jia-Le</au><au>Ding, Ying</au><au>Li, Ge</au><au>Zeng, Xiang</au><au>Ma, Yuan-Huan</au><au>Quan, Qi</au><au>Xing, Ling-Yan</au><au>Jiang, Bin</au><au>Wang, Ya-Qiong</au><au>Zhang, Ling</au><au>Chen, Zheng-Hong</au><au>Zhang, Hong-Bo</au><au>Chen, Yuan-Feng</au><au>Zheng, Qiu-Jian</au><au>Zeng, Yuan-Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2023-06</date><risdate>2023</risdate><volume>297</volume><spage>122103</spage><epage>122103</epage><pages>122103-122103</pages><artnum>122103</artnum><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Following transected spinal cord injury (SCI), there is a critical need to restore nerve conduction at the injury site and activate the silent neural circuits caudal to the injury to promote the recovery of voluntary movement. In this study, we generated a rat model of SCI, constructed neural stem cell (NSC)-derived spinal cord-like tissue (SCLT), and evaluated its ability to replace injured spinal cord and repair nerve conduction in the spinal cord as a neuronal relay. The lumbosacral spinal cord was further activated with tail nerve electrical stimulation (TNES) as a synergistic electrical stimulation to better receive the neural information transmitted by the SCLT. Next, we investigated the neuromodulatory mechanism underlying the action of TNES and its synergism with SCLT in SCI repair. TNES promoted the regeneration and remyelination of axons and increased the proportion of glutamatergic neurons in SCLT to transmit brain-derived neural information more efficiently to the caudal spinal cord. TNES also increased the innervation of motor neurons to hindlimb muscle and improved the microenvironment of muscle tissue, resulting in effective prevention of hindlimb muscle atrophy and enhanced muscle mitochondrial energy metabolism. Tracing of the neural circuits of the sciatic nerve and tail nerve identified the mechanisms responsible for the synergistic effects of SCLT transplantation and TNES in activating central pattern generator (CPG) neural circuits and promoting voluntary motor function recovery in rats. The combination of SCLT and TNES is expected to provide a new breakthrough for patients with SCI to restore voluntary movement and control their muscles.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>37028111</pmid><doi>10.1016/j.biomaterials.2023.122103</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3804-5792</orcidid><orcidid>https://orcid.org/0000-0003-4577-749X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2023-06, Vol.297, p.122103-122103, Article 122103
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_2834214799
source MEDLINE; Elsevier ScienceDirect Journals
subjects animal injuries
animal models
Animals
Axons - physiology
biocompatible materials
Electric Stimulation
electrical treatment
energy metabolism
hindlimbs
innervation
mitochondria
Motor Neurons - physiology
muscle tissues
muscles
muscular atrophy
Nerve Regeneration - physiology
nerve tissue
neural stem cells
neurons
Rats
Recovery of Function - physiology
Spinal Cord
Spinal Cord Injuries - therapy
Spinal Cord Regeneration
Spinal cord-like tissue
synergism
Synergistic electrical stimulation
Tail
Transected spinal cord injury
Transplantation
Voluntary motor function recovery
title Tail nerve electrical stimulation promoted the efficiency of transplanted spinal cord-like tissue as a neuronal relay to repair the motor function of rats with transected spinal cord injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A37%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tail%20nerve%20electrical%20stimulation%20promoted%20the%20efficiency%20of%20transplanted%20spinal%20cord-like%20tissue%20as%20a%20neuronal%20relay%20to%20repair%20the%20motor%20function%20of%20rats%20with%20transected%20spinal%20cord%20injury&rft.jtitle=Biomaterials&rft.au=Lai,%20Bi-Qin&rft.date=2023-06&rft.volume=297&rft.spage=122103&rft.epage=122103&rft.pages=122103-122103&rft.artnum=122103&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2023.122103&rft_dat=%3Cproquest_cross%3E2798710846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2798710846&rft_id=info:pmid/37028111&rft_els_id=S0142961223001114&rfr_iscdi=true