Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study

Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical physics (Lancaster) 2024-02, Vol.51 (2), p.1083-1091
Hauptverfasser: Hou, Shaoping, Wang, Hongbo, Wang, Xiaoyu, Chen, Huanhuan, Zhou, Boyu, Meng, Ruiqing, Sha, Xianzheng, Chang, Shijie, Wang, Huan, Jiang, Wenyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1091
container_issue 2
container_start_page 1083
container_title Medical physics (Lancaster)
container_volume 51
creator Hou, Shaoping
Wang, Hongbo
Wang, Xiaoyu
Chen, Huanhuan
Zhou, Boyu
Meng, Ruiqing
Sha, Xianzheng
Chang, Shijie
Wang, Huan
Jiang, Wenyan
description Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. Methods This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. Results A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort. Conclusion Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.
doi_str_mv 10.1002/mp.16581
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833996701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833996701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMoOo6CTyA5emnN1ps3GdxgBkX03KTTFY30ZpJW5uYj6Cv6JGYW9SSEpKj66q9KFUIHlBxTQthJ0x_TJM7oBhoxkfJIMJJvohEhuYiYIPEO2nXumRCS8Jhsox2eCpLxnI_Q5_3QdPbr_aM2r2CxaT1YLRUEC8_urnGn8SrSgJcuHOMwtLKsweHeQmWUN127wM4vL-5wM3i5dIT0PljQeoffjH_C9dA-YiVbBfYUn4XcrtOh7PJSXXD3Hjs_VPM9tKVl7WB__Y7Rw8X5_eQqmt5cXk_OppFiGaMR5OHDCU25FiphvBSKlSAEJbIsq0rIUsc84RqAl7ySSaVSlSeMxjEFTXlG-BgdrXRDKy8DOF80ximoa9lCN7iCZZzneZIS-ocq2zlnQRe9NY2084KSYrGAoumL5QICerhWHcoGql_wZ-IBiFbAm6lh_q9QMbtdCX4D5TiTTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833996701</pqid></control><display><type>article</type><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</creator><creatorcontrib>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</creatorcontrib><description>Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. Methods This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. Results A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort. Conclusion Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.16581</identifier><identifier>PMID: 37408393</identifier><language>eng</language><publisher>United States</publisher><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - genetics ; EGFR ; ErbB Receptors - genetics ; Humans ; liver metastasis ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - genetics ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - genetics ; Magnetic Resonance Imaging - methods ; Mutation ; NSCLC ; radiomics ; Retrospective Studies ; tumor‐liver interface</subject><ispartof>Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1083-1091</ispartof><rights>2023 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.16581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.16581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37408393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Shaoping</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Chen, Huanhuan</creatorcontrib><creatorcontrib>Zhou, Boyu</creatorcontrib><creatorcontrib>Meng, Ruiqing</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Chang, Shijie</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Jiang, Wenyan</creatorcontrib><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. Methods This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. Results A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort. Conclusion Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</description><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>EGFR</subject><subject>ErbB Receptors - genetics</subject><subject>Humans</subject><subject>liver metastasis</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - genetics</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - genetics</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mutation</subject><subject>NSCLC</subject><subject>radiomics</subject><subject>Retrospective Studies</subject><subject>tumor‐liver interface</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kclKBDEQhoMoOo6CTyA5emnN1ps3GdxgBkX03KTTFY30ZpJW5uYj6Cv6JGYW9SSEpKj66q9KFUIHlBxTQthJ0x_TJM7oBhoxkfJIMJJvohEhuYiYIPEO2nXumRCS8Jhsox2eCpLxnI_Q5_3QdPbr_aM2r2CxaT1YLRUEC8_urnGn8SrSgJcuHOMwtLKsweHeQmWUN127wM4vL-5wM3i5dIT0PljQeoffjH_C9dA-YiVbBfYUn4XcrtOh7PJSXXD3Hjs_VPM9tKVl7WB__Y7Rw8X5_eQqmt5cXk_OppFiGaMR5OHDCU25FiphvBSKlSAEJbIsq0rIUsc84RqAl7ySSaVSlSeMxjEFTXlG-BgdrXRDKy8DOF80ximoa9lCN7iCZZzneZIS-ocq2zlnQRe9NY2084KSYrGAoumL5QICerhWHcoGql_wZ-IBiFbAm6lh_q9QMbtdCX4D5TiTTg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Hou, Shaoping</creator><creator>Wang, Hongbo</creator><creator>Wang, Xiaoyu</creator><creator>Chen, Huanhuan</creator><creator>Zhou, Boyu</creator><creator>Meng, Ruiqing</creator><creator>Sha, Xianzheng</creator><creator>Chang, Shijie</creator><creator>Wang, Huan</creator><creator>Jiang, Wenyan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202402</creationdate><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><author>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>EGFR</topic><topic>ErbB Receptors - genetics</topic><topic>Humans</topic><topic>liver metastasis</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - genetics</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - genetics</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mutation</topic><topic>NSCLC</topic><topic>radiomics</topic><topic>Retrospective Studies</topic><topic>tumor‐liver interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Shaoping</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Chen, Huanhuan</creatorcontrib><creatorcontrib>Zhou, Boyu</creatorcontrib><creatorcontrib>Meng, Ruiqing</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Chang, Shijie</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Jiang, Wenyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Shaoping</au><au>Wang, Hongbo</au><au>Wang, Xiaoyu</au><au>Chen, Huanhuan</au><au>Zhou, Boyu</au><au>Meng, Ruiqing</au><au>Sha, Xianzheng</au><au>Chang, Shijie</au><au>Wang, Huan</au><au>Jiang, Wenyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2024-02</date><risdate>2024</risdate><volume>51</volume><issue>2</issue><spage>1083</spage><epage>1091</epage><pages>1083-1091</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM. Methods This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis. Results A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort. Conclusion Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</abstract><cop>United States</cop><pmid>37408393</pmid><doi>10.1002/mp.16581</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-2405
ispartof Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1083-1091
issn 0094-2405
2473-4209
language eng
recordid cdi_proquest_miscellaneous_2833996701
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Carcinoma, Non-Small-Cell Lung - diagnostic imaging
Carcinoma, Non-Small-Cell Lung - genetics
EGFR
ErbB Receptors - genetics
Humans
liver metastasis
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - genetics
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - genetics
Magnetic Resonance Imaging - methods
Mutation
NSCLC
radiomics
Retrospective Studies
tumor‐liver interface
title Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%E2%80%90liver%20interface%20in%20MRI%20of%20liver%20metastasis%20enables%20prediction%20of%20EGFR%20mutation%20in%20patients%20with%20lung%20cancer:%20A%20proof%E2%80%90of%E2%80%90concept%20study&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Hou,%20Shaoping&rft.date=2024-02&rft.volume=51&rft.issue=2&rft.spage=1083&rft.epage=1091&rft.pages=1083-1091&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.16581&rft_dat=%3Cproquest_cross%3E2833996701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833996701&rft_id=info:pmid/37408393&rfr_iscdi=true