Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study
Background Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making. Purpose To explore the value of tumor‐liver interface (TLI...
Gespeichert in:
Veröffentlicht in: | Medical physics (Lancaster) 2024-02, Vol.51 (2), p.1083-1091 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1091 |
---|---|
container_issue | 2 |
container_start_page | 1083 |
container_title | Medical physics (Lancaster) |
container_volume | 51 |
creator | Hou, Shaoping Wang, Hongbo Wang, Xiaoyu Chen, Huanhuan Zhou, Boyu Meng, Ruiqing Sha, Xianzheng Chang, Shijie Wang, Huan Jiang, Wenyan |
description | Background
Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making.
Purpose
To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM.
Methods
This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis.
Results
A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort.
Conclusion
Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning. |
doi_str_mv | 10.1002/mp.16581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833996701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833996701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</originalsourceid><addsrcrecordid>eNp1kclKBDEQhoMoOo6CTyA5emnN1ps3GdxgBkX03KTTFY30ZpJW5uYj6Cv6JGYW9SSEpKj66q9KFUIHlBxTQthJ0x_TJM7oBhoxkfJIMJJvohEhuYiYIPEO2nXumRCS8Jhsox2eCpLxnI_Q5_3QdPbr_aM2r2CxaT1YLRUEC8_urnGn8SrSgJcuHOMwtLKsweHeQmWUN127wM4vL-5wM3i5dIT0PljQeoffjH_C9dA-YiVbBfYUn4XcrtOh7PJSXXD3Hjs_VPM9tKVl7WB__Y7Rw8X5_eQqmt5cXk_OppFiGaMR5OHDCU25FiphvBSKlSAEJbIsq0rIUsc84RqAl7ySSaVSlSeMxjEFTXlG-BgdrXRDKy8DOF80ximoa9lCN7iCZZzneZIS-ocq2zlnQRe9NY2084KSYrGAoumL5QICerhWHcoGql_wZ-IBiFbAm6lh_q9QMbtdCX4D5TiTTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833996701</pqid></control><display><type>article</type><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</creator><creatorcontrib>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</creatorcontrib><description>Background
Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making.
Purpose
To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM.
Methods
This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis.
Results
A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort.
Conclusion
Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</description><identifier>ISSN: 0094-2405</identifier><identifier>EISSN: 2473-4209</identifier><identifier>DOI: 10.1002/mp.16581</identifier><identifier>PMID: 37408393</identifier><language>eng</language><publisher>United States</publisher><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging ; Carcinoma, Non-Small-Cell Lung - genetics ; EGFR ; ErbB Receptors - genetics ; Humans ; liver metastasis ; Liver Neoplasms - diagnostic imaging ; Liver Neoplasms - genetics ; Lung Neoplasms - diagnostic imaging ; Lung Neoplasms - genetics ; Magnetic Resonance Imaging - methods ; Mutation ; NSCLC ; radiomics ; Retrospective Studies ; tumor‐liver interface</subject><ispartof>Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1083-1091</ispartof><rights>2023 American Association of Physicists in Medicine.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmp.16581$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmp.16581$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37408393$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Shaoping</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Chen, Huanhuan</creatorcontrib><creatorcontrib>Zhou, Boyu</creatorcontrib><creatorcontrib>Meng, Ruiqing</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Chang, Shijie</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Jiang, Wenyan</creatorcontrib><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><title>Medical physics (Lancaster)</title><addtitle>Med Phys</addtitle><description>Background
Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making.
Purpose
To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM.
Methods
This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis.
Results
A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort.
Conclusion
Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</description><subject>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>EGFR</subject><subject>ErbB Receptors - genetics</subject><subject>Humans</subject><subject>liver metastasis</subject><subject>Liver Neoplasms - diagnostic imaging</subject><subject>Liver Neoplasms - genetics</subject><subject>Lung Neoplasms - diagnostic imaging</subject><subject>Lung Neoplasms - genetics</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Mutation</subject><subject>NSCLC</subject><subject>radiomics</subject><subject>Retrospective Studies</subject><subject>tumor‐liver interface</subject><issn>0094-2405</issn><issn>2473-4209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kclKBDEQhoMoOo6CTyA5emnN1ps3GdxgBkX03KTTFY30ZpJW5uYj6Cv6JGYW9SSEpKj66q9KFUIHlBxTQthJ0x_TJM7oBhoxkfJIMJJvohEhuYiYIPEO2nXumRCS8Jhsox2eCpLxnI_Q5_3QdPbr_aM2r2CxaT1YLRUEC8_urnGn8SrSgJcuHOMwtLKsweHeQmWUN127wM4vL-5wM3i5dIT0PljQeoffjH_C9dA-YiVbBfYUn4XcrtOh7PJSXXD3Hjs_VPM9tKVl7WB__Y7Rw8X5_eQqmt5cXk_OppFiGaMR5OHDCU25FiphvBSKlSAEJbIsq0rIUsc84RqAl7ySSaVSlSeMxjEFTXlG-BgdrXRDKy8DOF80ximoa9lCN7iCZZzneZIS-ocq2zlnQRe9NY2084KSYrGAoumL5QICerhWHcoGql_wZ-IBiFbAm6lh_q9QMbtdCX4D5TiTTg</recordid><startdate>202402</startdate><enddate>202402</enddate><creator>Hou, Shaoping</creator><creator>Wang, Hongbo</creator><creator>Wang, Xiaoyu</creator><creator>Chen, Huanhuan</creator><creator>Zhou, Boyu</creator><creator>Meng, Ruiqing</creator><creator>Sha, Xianzheng</creator><creator>Chang, Shijie</creator><creator>Wang, Huan</creator><creator>Jiang, Wenyan</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>202402</creationdate><title>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</title><author>Hou, Shaoping ; Wang, Hongbo ; Wang, Xiaoyu ; Chen, Huanhuan ; Zhou, Boyu ; Meng, Ruiqing ; Sha, Xianzheng ; Chang, Shijie ; Wang, Huan ; Jiang, Wenyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2821-e96586173f4c623b4c2be4410abbdd4abf5363fee3b3da6dc7c9621551ef13803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carcinoma, Non-Small-Cell Lung - diagnostic imaging</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>EGFR</topic><topic>ErbB Receptors - genetics</topic><topic>Humans</topic><topic>liver metastasis</topic><topic>Liver Neoplasms - diagnostic imaging</topic><topic>Liver Neoplasms - genetics</topic><topic>Lung Neoplasms - diagnostic imaging</topic><topic>Lung Neoplasms - genetics</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Mutation</topic><topic>NSCLC</topic><topic>radiomics</topic><topic>Retrospective Studies</topic><topic>tumor‐liver interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Shaoping</creatorcontrib><creatorcontrib>Wang, Hongbo</creatorcontrib><creatorcontrib>Wang, Xiaoyu</creatorcontrib><creatorcontrib>Chen, Huanhuan</creatorcontrib><creatorcontrib>Zhou, Boyu</creatorcontrib><creatorcontrib>Meng, Ruiqing</creatorcontrib><creatorcontrib>Sha, Xianzheng</creatorcontrib><creatorcontrib>Chang, Shijie</creatorcontrib><creatorcontrib>Wang, Huan</creatorcontrib><creatorcontrib>Jiang, Wenyan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical physics (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Shaoping</au><au>Wang, Hongbo</au><au>Wang, Xiaoyu</au><au>Chen, Huanhuan</au><au>Zhou, Boyu</au><au>Meng, Ruiqing</au><au>Sha, Xianzheng</au><au>Chang, Shijie</au><au>Wang, Huan</au><au>Jiang, Wenyan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study</atitle><jtitle>Medical physics (Lancaster)</jtitle><addtitle>Med Phys</addtitle><date>2024-02</date><risdate>2024</risdate><volume>51</volume><issue>2</issue><spage>1083</spage><epage>1091</epage><pages>1083-1091</pages><issn>0094-2405</issn><eissn>2473-4209</eissn><abstract>Background
Preoperative prediction of the epidermal growth factor receptor (EGFR) status in non‐small‐cell lung cancer (NSCLC) patients with liver metastasis (LM) may have potential clinical values for assisting in treatment decision‐making.
Purpose
To explore the value of tumor‐liver interface (TLI)‐based magnetic resonance imaging (MRI) radiomics for detecting the EGFR mutation in NSCLC patients with LM.
Methods
This retrospective study included 123 and 44 patients from hospital 1 (between Feb. 2018 and Dec. 2021) and hospital 2 (between Nov. 2015 and Aug. 2022), respectively. The patients received contrast‐enhanced T1‐weighted (CET1) and T2‐weighted (T2W) liver MRI scans before treatment. Radiomics features were extracted from MRI images of TLI and the whole tumor region, separately. The least absolute shrinkage and selection operator (LASSO) regression was used to screen the features and establish radiomics signatures (RSs) based on TLI (RS‐TLI) and the whole tumor (RS‐W). The RSs were evaluated by the receiver operating characteristic (ROC) curve analysis.
Results
A total of 5 and 6 features were identified highly correlated with the EGFR mutation status from TLI and the whole tumor, respectively. The RS‐TLI showed better prediction performance than RS‐W in the training (AUCs, RS‐TLI vs. RS‐W, 0.842 vs. 0.797), internal validation (AUCs, RS‐TLI vs. RS‐W, 0.771 vs. 0.676) and external validation (AUCs, RS‐TLI vs. RS‐W, 0.733 vs. 0.679) cohort.
Conclusion
Our study demonstrated that TLI‐based radiomics can improve prediction performance of the EGFR mutation in lung cancer patients with LM. The established multi‐parametric MRI radiomics models may be used as new markers that can potentially assist in personalized treatment planning.</abstract><cop>United States</cop><pmid>37408393</pmid><doi>10.1002/mp.16581</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-2405 |
ispartof | Medical physics (Lancaster), 2024-02, Vol.51 (2), p.1083-1091 |
issn | 0094-2405 2473-4209 |
language | eng |
recordid | cdi_proquest_miscellaneous_2833996701 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Carcinoma, Non-Small-Cell Lung - diagnostic imaging Carcinoma, Non-Small-Cell Lung - genetics EGFR ErbB Receptors - genetics Humans liver metastasis Liver Neoplasms - diagnostic imaging Liver Neoplasms - genetics Lung Neoplasms - diagnostic imaging Lung Neoplasms - genetics Magnetic Resonance Imaging - methods Mutation NSCLC radiomics Retrospective Studies tumor‐liver interface |
title | Tumor‐liver interface in MRI of liver metastasis enables prediction of EGFR mutation in patients with lung cancer: A proof‐of‐concept study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A05%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tumor%E2%80%90liver%20interface%20in%20MRI%20of%20liver%20metastasis%20enables%20prediction%20of%20EGFR%20mutation%20in%20patients%20with%20lung%20cancer:%20A%20proof%E2%80%90of%E2%80%90concept%20study&rft.jtitle=Medical%20physics%20(Lancaster)&rft.au=Hou,%20Shaoping&rft.date=2024-02&rft.volume=51&rft.issue=2&rft.spage=1083&rft.epage=1091&rft.pages=1083-1091&rft.issn=0094-2405&rft.eissn=2473-4209&rft_id=info:doi/10.1002/mp.16581&rft_dat=%3Cproquest_cross%3E2833996701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833996701&rft_id=info:pmid/37408393&rfr_iscdi=true |