Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation
Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in biomedical engineering 2023-11, Vol.39 (11), p.e3748-n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | e3748 |
container_title | International journal for numerical methods in biomedical engineering |
container_volume | 39 |
creator | Celant, Morena Toro, Eleuterio F. Bertaglia, Giulia Cozzio, Susanna Caleffi, Valerio Valiani, Alessandro Blanco, Pablo J. Müller, Lucas O. |
description | Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.
In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system. |
doi_str_mv | 10.1002/cnm.3748 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833996544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833996544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</originalsourceid><addsrcrecordid>eNp1kctqGzEUhkVJaUxi6BMEQTfZTKLLXKRlMGlayGXTrgdJPpOR0UiONIPxLo_QZ8yTVG4cFwLRQhI_Hx-H8yP0lZILSgi7NH644E0pPqEZIyUpGlk2R4c_l8dontKK5MOklA3_go4zTgSvxAz1d2EJzvpHDCmBH61yuN-uIY7gkw0eb-zYY4WNCwmWL89_XAhrPKixh3xZk_FhZ8BdiDiHeOeIgPtpUB4bG83kMhf8KfrcKZdgvn9P0O_v178WP4rbh5ufi6vbwnDBRaGlpjXjSjNVLUuQXQ0VEZRqyIGgRtOOaSMa0hjQnaas6mgnawZcCkGo4ifo_NW7juFpgjS2g00GnFMewpRaJjiXsq7KMqPf3qGrMEWfp8uULOuKiVL-F5oYUorQtetoBxW3LSXtroA2F9DuCsjo2V446QGWB_Bt3RkoXoGNdbD9UNQu7u_-Cf8CGn6QtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894652849</pqid></control><display><type>article</type><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</creator><creatorcontrib>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</creatorcontrib><description>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.
In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3748</identifier><identifier>PMID: 37408358</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>arterial hypertension ; arterial pressure regulation ; Arteries ; Blood pressure ; Cardiovascular system ; Complications ; Computer applications ; global closed‐loop model ; Hypertension ; Mathematical analysis ; Mathematical models ; Pulmonary circulation ; Risk factors</subject><ispartof>International journal for numerical methods in biomedical engineering, 2023-11, Vol.39 (11), p.e3748-n/a</ispartof><rights>2023 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2023 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</citedby><cites>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</cites><orcidid>0000-0003-3527-619X ; 0000-0001-7066-4804 ; 0000-0002-2874-9588 ; 0000-0003-1933-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3748$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3748$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37408358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celant, Morena</creatorcontrib><creatorcontrib>Toro, Eleuterio F.</creatorcontrib><creatorcontrib>Bertaglia, Giulia</creatorcontrib><creatorcontrib>Cozzio, Susanna</creatorcontrib><creatorcontrib>Caleffi, Valerio</creatorcontrib><creatorcontrib>Valiani, Alessandro</creatorcontrib><creatorcontrib>Blanco, Pablo J.</creatorcontrib><creatorcontrib>Müller, Lucas O.</creatorcontrib><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.
In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</description><subject>arterial hypertension</subject><subject>arterial pressure regulation</subject><subject>Arteries</subject><subject>Blood pressure</subject><subject>Cardiovascular system</subject><subject>Complications</subject><subject>Computer applications</subject><subject>global closed‐loop model</subject><subject>Hypertension</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pulmonary circulation</subject><subject>Risk factors</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctqGzEUhkVJaUxi6BMEQTfZTKLLXKRlMGlayGXTrgdJPpOR0UiONIPxLo_QZ8yTVG4cFwLRQhI_Hx-H8yP0lZILSgi7NH644E0pPqEZIyUpGlk2R4c_l8dontKK5MOklA3_go4zTgSvxAz1d2EJzvpHDCmBH61yuN-uIY7gkw0eb-zYY4WNCwmWL89_XAhrPKixh3xZk_FhZ8BdiDiHeOeIgPtpUB4bG83kMhf8KfrcKZdgvn9P0O_v178WP4rbh5ufi6vbwnDBRaGlpjXjSjNVLUuQXQ0VEZRqyIGgRtOOaSMa0hjQnaas6mgnawZcCkGo4ifo_NW7juFpgjS2g00GnFMewpRaJjiXsq7KMqPf3qGrMEWfp8uULOuKiVL-F5oYUorQtetoBxW3LSXtroA2F9DuCsjo2V446QGWB_Bt3RkoXoGNdbD9UNQu7u_-Cf8CGn6QtA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Celant, Morena</creator><creator>Toro, Eleuterio F.</creator><creator>Bertaglia, Giulia</creator><creator>Cozzio, Susanna</creator><creator>Caleffi, Valerio</creator><creator>Valiani, Alessandro</creator><creator>Blanco, Pablo J.</creator><creator>Müller, Lucas O.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0001-7066-4804</orcidid><orcidid>https://orcid.org/0000-0002-2874-9588</orcidid><orcidid>https://orcid.org/0000-0003-1933-8995</orcidid></search><sort><creationdate>202311</creationdate><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><author>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>arterial hypertension</topic><topic>arterial pressure regulation</topic><topic>Arteries</topic><topic>Blood pressure</topic><topic>Cardiovascular system</topic><topic>Complications</topic><topic>Computer applications</topic><topic>global closed‐loop model</topic><topic>Hypertension</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pulmonary circulation</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celant, Morena</creatorcontrib><creatorcontrib>Toro, Eleuterio F.</creatorcontrib><creatorcontrib>Bertaglia, Giulia</creatorcontrib><creatorcontrib>Cozzio, Susanna</creatorcontrib><creatorcontrib>Caleffi, Valerio</creatorcontrib><creatorcontrib>Valiani, Alessandro</creatorcontrib><creatorcontrib>Blanco, Pablo J.</creatorcontrib><creatorcontrib>Müller, Lucas O.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celant, Morena</au><au>Toro, Eleuterio F.</au><au>Bertaglia, Giulia</au><au>Cozzio, Susanna</au><au>Caleffi, Valerio</au><au>Valiani, Alessandro</au><au>Blanco, Pablo J.</au><au>Müller, Lucas O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2023-11</date><risdate>2023</risdate><volume>39</volume><issue>11</issue><spage>e3748</spage><epage>n/a</epage><pages>e3748-n/a</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.
In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>37408358</pmid><doi>10.1002/cnm.3748</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0001-7066-4804</orcidid><orcidid>https://orcid.org/0000-0002-2874-9588</orcidid><orcidid>https://orcid.org/0000-0003-1933-8995</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-7939 |
ispartof | International journal for numerical methods in biomedical engineering, 2023-11, Vol.39 (11), p.e3748-n/a |
issn | 2040-7939 2040-7947 |
language | eng |
recordid | cdi_proquest_miscellaneous_2833996544 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | arterial hypertension arterial pressure regulation Arteries Blood pressure Cardiovascular system Complications Computer applications global closed‐loop model Hypertension Mathematical analysis Mathematical models Pulmonary circulation Risk factors |
title | Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20essential%20hypertension%20with%20a%20closed%E2%80%90loop%20mathematical%20model%20for%20the%20entire%20human%20circulation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Celant,%20Morena&rft.date=2023-11&rft.volume=39&rft.issue=11&rft.spage=e3748&rft.epage=n/a&rft.pages=e3748-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3748&rft_dat=%3Cproquest_cross%3E2833996544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894652849&rft_id=info:pmid/37408358&rfr_iscdi=true |