Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation

Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in biomedical engineering 2023-11, Vol.39 (11), p.e3748-n/a
Hauptverfasser: Celant, Morena, Toro, Eleuterio F., Bertaglia, Giulia, Cozzio, Susanna, Caleffi, Valerio, Valiani, Alessandro, Blanco, Pablo J., Müller, Lucas O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e3748
container_title International journal for numerical methods in biomedical engineering
container_volume 39
creator Celant, Morena
Toro, Eleuterio F.
Bertaglia, Giulia
Cozzio, Susanna
Caleffi, Valerio
Valiani, Alessandro
Blanco, Pablo J.
Müller, Lucas O.
description Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system. In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.
doi_str_mv 10.1002/cnm.3748
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833996544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833996544</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</originalsourceid><addsrcrecordid>eNp1kctqGzEUhkVJaUxi6BMEQTfZTKLLXKRlMGlayGXTrgdJPpOR0UiONIPxLo_QZ8yTVG4cFwLRQhI_Hx-H8yP0lZILSgi7NH644E0pPqEZIyUpGlk2R4c_l8dontKK5MOklA3_go4zTgSvxAz1d2EJzvpHDCmBH61yuN-uIY7gkw0eb-zYY4WNCwmWL89_XAhrPKixh3xZk_FhZ8BdiDiHeOeIgPtpUB4bG83kMhf8KfrcKZdgvn9P0O_v178WP4rbh5ufi6vbwnDBRaGlpjXjSjNVLUuQXQ0VEZRqyIGgRtOOaSMa0hjQnaas6mgnawZcCkGo4ifo_NW7juFpgjS2g00GnFMewpRaJjiXsq7KMqPf3qGrMEWfp8uULOuKiVL-F5oYUorQtetoBxW3LSXtroA2F9DuCsjo2V446QGWB_Bt3RkoXoGNdbD9UNQu7u_-Cf8CGn6QtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894652849</pqid></control><display><type>article</type><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</creator><creatorcontrib>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</creatorcontrib><description>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system. In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</description><identifier>ISSN: 2040-7939</identifier><identifier>EISSN: 2040-7947</identifier><identifier>DOI: 10.1002/cnm.3748</identifier><identifier>PMID: 37408358</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>arterial hypertension ; arterial pressure regulation ; Arteries ; Blood pressure ; Cardiovascular system ; Complications ; Computer applications ; global closed‐loop model ; Hypertension ; Mathematical analysis ; Mathematical models ; Pulmonary circulation ; Risk factors</subject><ispartof>International journal for numerical methods in biomedical engineering, 2023-11, Vol.39 (11), p.e3748-n/a</ispartof><rights>2023 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2023 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</citedby><cites>FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</cites><orcidid>0000-0003-3527-619X ; 0000-0001-7066-4804 ; 0000-0002-2874-9588 ; 0000-0003-1933-8995</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnm.3748$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnm.3748$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37408358$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Celant, Morena</creatorcontrib><creatorcontrib>Toro, Eleuterio F.</creatorcontrib><creatorcontrib>Bertaglia, Giulia</creatorcontrib><creatorcontrib>Cozzio, Susanna</creatorcontrib><creatorcontrib>Caleffi, Valerio</creatorcontrib><creatorcontrib>Valiani, Alessandro</creatorcontrib><creatorcontrib>Blanco, Pablo J.</creatorcontrib><creatorcontrib>Müller, Lucas O.</creatorcontrib><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><title>International journal for numerical methods in biomedical engineering</title><addtitle>Int J Numer Method Biomed Eng</addtitle><description>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system. In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</description><subject>arterial hypertension</subject><subject>arterial pressure regulation</subject><subject>Arteries</subject><subject>Blood pressure</subject><subject>Cardiovascular system</subject><subject>Complications</subject><subject>Computer applications</subject><subject>global closed‐loop model</subject><subject>Hypertension</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pulmonary circulation</subject><subject>Risk factors</subject><issn>2040-7939</issn><issn>2040-7947</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kctqGzEUhkVJaUxi6BMEQTfZTKLLXKRlMGlayGXTrgdJPpOR0UiONIPxLo_QZ8yTVG4cFwLRQhI_Hx-H8yP0lZILSgi7NH644E0pPqEZIyUpGlk2R4c_l8dontKK5MOklA3_go4zTgSvxAz1d2EJzvpHDCmBH61yuN-uIY7gkw0eb-zYY4WNCwmWL89_XAhrPKixh3xZk_FhZ8BdiDiHeOeIgPtpUB4bG83kMhf8KfrcKZdgvn9P0O_v178WP4rbh5ufi6vbwnDBRaGlpjXjSjNVLUuQXQ0VEZRqyIGgRtOOaSMa0hjQnaas6mgnawZcCkGo4ifo_NW7juFpgjS2g00GnFMewpRaJjiXsq7KMqPf3qGrMEWfp8uULOuKiVL-F5oYUorQtetoBxW3LSXtroA2F9DuCsjo2V446QGWB_Bt3RkoXoGNdbD9UNQu7u_-Cf8CGn6QtA</recordid><startdate>202311</startdate><enddate>202311</enddate><creator>Celant, Morena</creator><creator>Toro, Eleuterio F.</creator><creator>Bertaglia, Giulia</creator><creator>Cozzio, Susanna</creator><creator>Caleffi, Valerio</creator><creator>Valiani, Alessandro</creator><creator>Blanco, Pablo J.</creator><creator>Müller, Lucas O.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0001-7066-4804</orcidid><orcidid>https://orcid.org/0000-0002-2874-9588</orcidid><orcidid>https://orcid.org/0000-0003-1933-8995</orcidid></search><sort><creationdate>202311</creationdate><title>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</title><author>Celant, Morena ; Toro, Eleuterio F. ; Bertaglia, Giulia ; Cozzio, Susanna ; Caleffi, Valerio ; Valiani, Alessandro ; Blanco, Pablo J. ; Müller, Lucas O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3838-b9b1623ab2a5d4e9f6e50811be2a581cb1f2bc8707cebfb125f1f962e398801a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>arterial hypertension</topic><topic>arterial pressure regulation</topic><topic>Arteries</topic><topic>Blood pressure</topic><topic>Cardiovascular system</topic><topic>Complications</topic><topic>Computer applications</topic><topic>global closed‐loop model</topic><topic>Hypertension</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pulmonary circulation</topic><topic>Risk factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Celant, Morena</creatorcontrib><creatorcontrib>Toro, Eleuterio F.</creatorcontrib><creatorcontrib>Bertaglia, Giulia</creatorcontrib><creatorcontrib>Cozzio, Susanna</creatorcontrib><creatorcontrib>Caleffi, Valerio</creatorcontrib><creatorcontrib>Valiani, Alessandro</creatorcontrib><creatorcontrib>Blanco, Pablo J.</creatorcontrib><creatorcontrib>Müller, Lucas O.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for numerical methods in biomedical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Celant, Morena</au><au>Toro, Eleuterio F.</au><au>Bertaglia, Giulia</au><au>Cozzio, Susanna</au><au>Caleffi, Valerio</au><au>Valiani, Alessandro</au><au>Blanco, Pablo J.</au><au>Müller, Lucas O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation</atitle><jtitle>International journal for numerical methods in biomedical engineering</jtitle><addtitle>Int J Numer Method Biomed Eng</addtitle><date>2023-11</date><risdate>2023</risdate><volume>39</volume><issue>11</issue><spage>e3748</spage><epage>n/a</epage><pages>e3748-n/a</pages><issn>2040-7939</issn><eissn>2040-7947</eissn><abstract>Arterial hypertension, defined as an increase in systemic arterial pressure, is a major risk factor for the development of diseases affecting the cardiovascular system. Every year, 9.4 million deaths worldwide are caused by complications arising from hypertension. Despite well‐established approaches to diagnosis and treatment, fewer than half of all hypertensive patients have adequately controlled blood pressure. In this scenario, computational models of hypertension can be a practical approach for better quantifying the role played by different components of the cardiovascular system in the determination of this condition. In the present work we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario. In particular, we modify the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system. In the present work, we adopt a global closed‐loop multi‐scale mathematical model for the entire human circulation to reproduce a hypertensive scenario, modifying the model to reproduce alterations in the cardiovascular system that are cause and/or consequence of the hypertensive state. The adaptation does not only affect large systemic arteries and the heart but also the microcirculation, the pulmonary circulation and the venous system. Model outputs for the hypertensive scenario are validated through assessment of computational results against current knowledge on the impact of hypertension on the cardiovascular system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>37408358</pmid><doi>10.1002/cnm.3748</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-3527-619X</orcidid><orcidid>https://orcid.org/0000-0001-7066-4804</orcidid><orcidid>https://orcid.org/0000-0002-2874-9588</orcidid><orcidid>https://orcid.org/0000-0003-1933-8995</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-7939
ispartof International journal for numerical methods in biomedical engineering, 2023-11, Vol.39 (11), p.e3748-n/a
issn 2040-7939
2040-7947
language eng
recordid cdi_proquest_miscellaneous_2833996544
source Wiley Online Library Journals Frontfile Complete
subjects arterial hypertension
arterial pressure regulation
Arteries
Blood pressure
Cardiovascular system
Complications
Computer applications
global closed‐loop model
Hypertension
Mathematical analysis
Mathematical models
Pulmonary circulation
Risk factors
title Modeling essential hypertension with a closed‐loop mathematical model for the entire human circulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20essential%20hypertension%20with%20a%20closed%E2%80%90loop%20mathematical%20model%20for%20the%20entire%20human%20circulation&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20biomedical%20engineering&rft.au=Celant,%20Morena&rft.date=2023-11&rft.volume=39&rft.issue=11&rft.spage=e3748&rft.epage=n/a&rft.pages=e3748-n/a&rft.issn=2040-7939&rft.eissn=2040-7947&rft_id=info:doi/10.1002/cnm.3748&rft_dat=%3Cproquest_cross%3E2833996544%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894652849&rft_id=info:pmid/37408358&rfr_iscdi=true