Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce

Summary Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect‐resistance trait in Sitka spru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2023-09, Vol.239 (6), p.2138-2152
Hauptverfasser: Whitehill, Justin G. A., Yuen, Macaire M. S., Chiang, Angela, Ritland, Carol E., Bohlmann, Jörg
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2152
container_issue 6
container_start_page 2138
container_title The New phytologist
container_volume 239
creator Whitehill, Justin G. A.
Yuen, Macaire M. S.
Chiang, Angela
Ritland, Carol E.
Bohlmann, Jörg
description Summary Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect‐resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell‐type‐specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.
doi_str_mv 10.1111/nph.19103
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833649027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2851550004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3483-a24c9d27d6368e06ff8394fccc23c346652829fab5425f8d691e47e7f003fa663</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgiq6rB19AAl70UM2_pu1RFnUFUUEFbyWbTjDaNjVplb35CD6jT2LWVQ-CcxkYfnwMH0I7lBzSOEdt93BIC0r4ChpRIYskpzxbRSNCWJ5IIe830GYIj4SQIpVsHW3wTBDOCRkhfetVG7S3Xe8awAZUP3gI2BkcetcC1lDXuIIXqF3XQNtj2-JXgBdbf7y9R2lDr-JVtRUOQ9DQ9XZWA76x_ZPCofODhi20ZlQdYPt7j9Hd6cntZJpcXJ2dT44vEs1FzhPFhC4qllWSyxyINCbnhTBaa8ajkDJlOSuMmqWCpSavZEFBZJAZQrhRUvIx2l_mdt49DxD6srFh8b9qwQ2hZDnnUhSEZZHu_aGPbvBt_C6qlKZp7EpEdbBU2rsQPJiy87ZRfl5SUi6aL2Pz5Vfz0e5-Jw6zBqpf-VN1BEdL8GprmP-fVF5eT5eRn2F1jnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2851550004</pqid></control><display><type>article</type><title>Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Whitehill, Justin G. A. ; Yuen, Macaire M. S. ; Chiang, Angela ; Ritland, Carol E. ; Bohlmann, Jörg</creator><creatorcontrib>Whitehill, Justin G. A. ; Yuen, Macaire M. S. ; Chiang, Angela ; Ritland, Carol E. ; Bohlmann, Jörg</creatorcontrib><description>Summary Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect‐resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell‐type‐specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19103</identifier><identifier>PMID: 37403300</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Angiosperms ; Cell walls ; Cells ; Cellulose ; conifer ; Conifers ; Fluorescence ; Fluorescence microscopy ; Gene sequencing ; Genes ; Gymnosperms ; Insects ; laser‐capture microdissection ; lignin ; Molecular modelling ; Parenchyma ; Pest resistance ; Picea sitchensis ; plant resistance ; plant–insect interaction ; RNA sequencing ; secondary cell wall ; Shoots ; spruce ; Stone ; Transcription ; Transcription factors ; Transcriptomes ; Trees ; weevil ; Xylan</subject><ispartof>The New phytologist, 2023-09, Vol.239 (6), p.2138-2152</ispartof><rights>2023 The Authors © 2023 New Phytologist Foundation</rights><rights>2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3483-a24c9d27d6368e06ff8394fccc23c346652829fab5425f8d691e47e7f003fa663</cites><orcidid>0000-0003-1765-6228 ; 0000-0002-3637-7956 ; 0000-0003-2578-9522 ; 0000-0003-3179-6956 ; 0000-0001-9732-8229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fnph.19103$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fnph.19103$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37403300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whitehill, Justin G. A.</creatorcontrib><creatorcontrib>Yuen, Macaire M. S.</creatorcontrib><creatorcontrib>Chiang, Angela</creatorcontrib><creatorcontrib>Ritland, Carol E.</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><title>Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect‐resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell‐type‐specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.</description><subject>Angiosperms</subject><subject>Cell walls</subject><subject>Cells</subject><subject>Cellulose</subject><subject>conifer</subject><subject>Conifers</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Gymnosperms</subject><subject>Insects</subject><subject>laser‐capture microdissection</subject><subject>lignin</subject><subject>Molecular modelling</subject><subject>Parenchyma</subject><subject>Pest resistance</subject><subject>Picea sitchensis</subject><subject>plant resistance</subject><subject>plant–insect interaction</subject><subject>RNA sequencing</subject><subject>secondary cell wall</subject><subject>Shoots</subject><subject>spruce</subject><subject>Stone</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcriptomes</subject><subject>Trees</subject><subject>weevil</subject><subject>Xylan</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10M9KxDAQBvAgiq6rB19AAl70UM2_pu1RFnUFUUEFbyWbTjDaNjVplb35CD6jT2LWVQ-CcxkYfnwMH0I7lBzSOEdt93BIC0r4ChpRIYskpzxbRSNCWJ5IIe830GYIj4SQIpVsHW3wTBDOCRkhfetVG7S3Xe8awAZUP3gI2BkcetcC1lDXuIIXqF3XQNtj2-JXgBdbf7y9R2lDr-JVtRUOQ9DQ9XZWA76x_ZPCofODhi20ZlQdYPt7j9Hd6cntZJpcXJ2dT44vEs1FzhPFhC4qllWSyxyINCbnhTBaa8ajkDJlOSuMmqWCpSavZEFBZJAZQrhRUvIx2l_mdt49DxD6srFh8b9qwQ2hZDnnUhSEZZHu_aGPbvBt_C6qlKZp7EpEdbBU2rsQPJiy87ZRfl5SUi6aL2Pz5Vfz0e5-Jw6zBqpf-VN1BEdL8GprmP-fVF5eT5eRn2F1jnY</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Whitehill, Justin G. A.</creator><creator>Yuen, Macaire M. S.</creator><creator>Chiang, Angela</creator><creator>Ritland, Carol E.</creator><creator>Bohlmann, Jörg</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1765-6228</orcidid><orcidid>https://orcid.org/0000-0002-3637-7956</orcidid><orcidid>https://orcid.org/0000-0003-2578-9522</orcidid><orcidid>https://orcid.org/0000-0003-3179-6956</orcidid><orcidid>https://orcid.org/0000-0001-9732-8229</orcidid></search><sort><creationdate>202309</creationdate><title>Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce</title><author>Whitehill, Justin G. A. ; Yuen, Macaire M. S. ; Chiang, Angela ; Ritland, Carol E. ; Bohlmann, Jörg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3483-a24c9d27d6368e06ff8394fccc23c346652829fab5425f8d691e47e7f003fa663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Angiosperms</topic><topic>Cell walls</topic><topic>Cells</topic><topic>Cellulose</topic><topic>conifer</topic><topic>Conifers</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Gymnosperms</topic><topic>Insects</topic><topic>laser‐capture microdissection</topic><topic>lignin</topic><topic>Molecular modelling</topic><topic>Parenchyma</topic><topic>Pest resistance</topic><topic>Picea sitchensis</topic><topic>plant resistance</topic><topic>plant–insect interaction</topic><topic>RNA sequencing</topic><topic>secondary cell wall</topic><topic>Shoots</topic><topic>spruce</topic><topic>Stone</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcriptomes</topic><topic>Trees</topic><topic>weevil</topic><topic>Xylan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whitehill, Justin G. A.</creatorcontrib><creatorcontrib>Yuen, Macaire M. S.</creatorcontrib><creatorcontrib>Chiang, Angela</creatorcontrib><creatorcontrib>Ritland, Carol E.</creatorcontrib><creatorcontrib>Bohlmann, Jörg</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whitehill, Justin G. A.</au><au>Yuen, Macaire M. S.</au><au>Chiang, Angela</au><au>Ritland, Carol E.</au><au>Bohlmann, Jörg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2023-09</date><risdate>2023</risdate><volume>239</volume><issue>6</issue><spage>2138</spage><epage>2152</epage><pages>2138-2152</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Stone cells are a specialized, highly lignified cell type found in both angiosperms and gymnosperms. In conifers, abundance of stone cells in the cortex provides a robust constitutive physical defense against stem feeding insects. Stone cells are a major insect‐resistance trait in Sitka spruce (Picea sitchensis), occurring in dense clusters in apical shoots of trees resistant (R) to spruce weevil (Pissodes strobi) but being rare in susceptible (S) trees. To learn more about molecular mechanisms of stone cell formation in conifers, we used laser microdissection and RNA sequencing to develop cell‐type‐specific transcriptomes of developing stone cells from R and S trees. Using light, immunohistochemical, and fluorescence microscopy, we also visualized the deposition of cellulose, xylan, and lignin associated with stone cell development. A total of 1293 genes were differentially expressed at higher levels in developing stone cells relative to cortical parenchyma. Genes with potential roles in stone cell secondary cell wall formation (SCW) were identified and their expression evaluated over a time course of stone cell formation in R and S trees. The expression of several transcriptional regulators was associated with stone cell formation, including a NAC family transcription factor and several genes annotated as MYB transcription factors with known roles in SCW formation.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37403300</pmid><doi>10.1111/nph.19103</doi><tpages>2152</tpages><orcidid>https://orcid.org/0000-0003-1765-6228</orcidid><orcidid>https://orcid.org/0000-0002-3637-7956</orcidid><orcidid>https://orcid.org/0000-0003-2578-9522</orcidid><orcidid>https://orcid.org/0000-0003-3179-6956</orcidid><orcidid>https://orcid.org/0000-0001-9732-8229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2023-09, Vol.239 (6), p.2138-2152
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2833649027
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals
subjects Angiosperms
Cell walls
Cells
Cellulose
conifer
Conifers
Fluorescence
Fluorescence microscopy
Gene sequencing
Genes
Gymnosperms
Insects
laser‐capture microdissection
lignin
Molecular modelling
Parenchyma
Pest resistance
Picea sitchensis
plant resistance
plant–insect interaction
RNA sequencing
secondary cell wall
Shoots
spruce
Stone
Transcription
Transcription factors
Transcriptomes
Trees
weevil
Xylan
title Transcriptome features of stone cell development in weevil‐resistant and susceptible Sitka spruce
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20features%20of%20stone%20cell%20development%20in%20weevil%E2%80%90resistant%20and%20susceptible%20Sitka%20spruce&rft.jtitle=The%20New%20phytologist&rft.au=Whitehill,%20Justin%20G.%20A.&rft.date=2023-09&rft.volume=239&rft.issue=6&rft.spage=2138&rft.epage=2152&rft.pages=2138-2152&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19103&rft_dat=%3Cproquest_cross%3E2851550004%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2851550004&rft_id=info:pmid/37403300&rfr_iscdi=true