A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics
The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation‐driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the w...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-10, Vol.35 (40), p.e2304099-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 40 |
container_start_page | e2304099 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Li, Lianhui Zheng, Zhuo Ge, Changlei Wang, Yongfeng Dai, Hao Li, Lili Wang, Shuqi Gao, Qiang Liu, Mengyuan Sun, Fuqin Zhang, Ting |
description | The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation‐driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al2O3) hydrovoltaic coating with both good electricity generation (open‐circuit voltage, Voc ≈ 3.18 V) and sensitive ion sensing (2285 V M−1 for NaCl solutions in 10−4 to 10−3 m) capabilities is developed. The porous nanostructure composed of Al2O3 nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al2O3 film to easily deal with 9.92 m s−1 strong water‐flow impact. Finally, skin‐tight and non‐contact device structures are proposed to achieve wearable multifunctional self‐powered sensing directly using sweat. The flexible tough PAN/Al2O3 hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation‐induced hydrovoltaic effect in self‐powered wearable sensing electronics.
A flexible tough hydrovoltaic coating with a strong structural binding effect is developed for the simultaneous achievement of good electricity generation (open‐circuit voltage ≈3.18 V) and highly sensitive ion‐sensing ability. Based on skin‐tight and non‐contact device structures, wearable multifunctional self‐powered sensing directly using sweat is demonstrated. |
doi_str_mv | 10.1002/adma.202304099 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2833024824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2872182127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3019-626ca0eab7ba59dfc54be33042d7ac13fe4951ec24a86595d01056151c269c083</originalsourceid><addsrcrecordid>eNqFkMFLwzAYxYMoOKdXzwUvXjq_pE3aHMvcnDDx4MRjSNN0dmTNTFp1_70pEwUvnr7Hx-89Hg-hSwwTDEBuZLWVEwIkgRQ4P0IjTAmOg6bHaAQ8oTFnaX6KzrzfAABnwEZoXkRzoz-b0uhoZfv1a7TYV86-W9PJRkVTK7umXUe1ddGLlk4O3JNu_fCcGa06Z9tG-XN0Ukvj9cX3HaPn-Ww1XcTLx7v7abGMVQKYx4wwJUHLMisl5VWtaFrqJBQmVSYVTmqdcoq1IqnMGeW0AgyUYYoVYVxBnozR9SF35-xbr30nto1X2hjZatt7QfKQRtKcpAG9-oNubO_a0C5QGcE5wSQL1ORAKWe9d7oWO9dspdsLDGKYVQyzip9Zg4EfDB-N0ft_aFHcPhS_3i-jtHoX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2872182127</pqid></control><display><type>article</type><title>A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Lianhui ; Zheng, Zhuo ; Ge, Changlei ; Wang, Yongfeng ; Dai, Hao ; Li, Lili ; Wang, Shuqi ; Gao, Qiang ; Liu, Mengyuan ; Sun, Fuqin ; Zhang, Ting</creator><creatorcontrib>Li, Lianhui ; Zheng, Zhuo ; Ge, Changlei ; Wang, Yongfeng ; Dai, Hao ; Li, Lili ; Wang, Shuqi ; Gao, Qiang ; Liu, Mengyuan ; Sun, Fuqin ; Zhang, Ting</creatorcontrib><description>The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation‐driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al2O3) hydrovoltaic coating with both good electricity generation (open‐circuit voltage, Voc ≈ 3.18 V) and sensitive ion sensing (2285 V M−1 for NaCl solutions in 10−4 to 10−3 m) capabilities is developed. The porous nanostructure composed of Al2O3 nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al2O3 film to easily deal with 9.92 m s−1 strong water‐flow impact. Finally, skin‐tight and non‐contact device structures are proposed to achieve wearable multifunctional self‐powered sensing directly using sweat. The flexible tough PAN/Al2O3 hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation‐induced hydrovoltaic effect in self‐powered wearable sensing electronics.
A flexible tough hydrovoltaic coating with a strong structural binding effect is developed for the simultaneous achievement of good electricity generation (open‐circuit voltage ≈3.18 V) and highly sensitive ion‐sensing ability. Based on skin‐tight and non‐contact device structures, wearable multifunctional self‐powered sensing directly using sweat is demonstrated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202304099</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum oxide ; Binding ; Circuits ; Coating ; Electric contacts ; Electronics ; Evaporation ; hydrovoltaic coatings ; hydrovoltaic effect ; Nanomaterials ; Nanoparticles ; Nanostructure ; Polyacrylonitrile ; self‐powered wearable sensing electronics ; toughness ; water evaporation ; Wearable technology</subject><ispartof>Advanced materials (Weinheim), 2023-10, Vol.35 (40), p.e2304099-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3019-626ca0eab7ba59dfc54be33042d7ac13fe4951ec24a86595d01056151c269c083</citedby><cites>FETCH-LOGICAL-c3019-626ca0eab7ba59dfc54be33042d7ac13fe4951ec24a86595d01056151c269c083</cites><orcidid>0000-0001-5008-2081</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202304099$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202304099$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Lianhui</creatorcontrib><creatorcontrib>Zheng, Zhuo</creatorcontrib><creatorcontrib>Ge, Changlei</creatorcontrib><creatorcontrib>Wang, Yongfeng</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Liu, Mengyuan</creatorcontrib><creatorcontrib>Sun, Fuqin</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><title>A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics</title><title>Advanced materials (Weinheim)</title><description>The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation‐driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al2O3) hydrovoltaic coating with both good electricity generation (open‐circuit voltage, Voc ≈ 3.18 V) and sensitive ion sensing (2285 V M−1 for NaCl solutions in 10−4 to 10−3 m) capabilities is developed. The porous nanostructure composed of Al2O3 nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al2O3 film to easily deal with 9.92 m s−1 strong water‐flow impact. Finally, skin‐tight and non‐contact device structures are proposed to achieve wearable multifunctional self‐powered sensing directly using sweat. The flexible tough PAN/Al2O3 hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation‐induced hydrovoltaic effect in self‐powered wearable sensing electronics.
A flexible tough hydrovoltaic coating with a strong structural binding effect is developed for the simultaneous achievement of good electricity generation (open‐circuit voltage ≈3.18 V) and highly sensitive ion‐sensing ability. Based on skin‐tight and non‐contact device structures, wearable multifunctional self‐powered sensing directly using sweat is demonstrated.</description><subject>Aluminum oxide</subject><subject>Binding</subject><subject>Circuits</subject><subject>Coating</subject><subject>Electric contacts</subject><subject>Electronics</subject><subject>Evaporation</subject><subject>hydrovoltaic coatings</subject><subject>hydrovoltaic effect</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Polyacrylonitrile</subject><subject>self‐powered wearable sensing electronics</subject><subject>toughness</subject><subject>water evaporation</subject><subject>Wearable technology</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMFLwzAYxYMoOKdXzwUvXjq_pE3aHMvcnDDx4MRjSNN0dmTNTFp1_70pEwUvnr7Hx-89Hg-hSwwTDEBuZLWVEwIkgRQ4P0IjTAmOg6bHaAQ8oTFnaX6KzrzfAABnwEZoXkRzoz-b0uhoZfv1a7TYV86-W9PJRkVTK7umXUe1ddGLlk4O3JNu_fCcGa06Z9tG-XN0Ukvj9cX3HaPn-Ww1XcTLx7v7abGMVQKYx4wwJUHLMisl5VWtaFrqJBQmVSYVTmqdcoq1IqnMGeW0AgyUYYoVYVxBnozR9SF35-xbr30nto1X2hjZatt7QfKQRtKcpAG9-oNubO_a0C5QGcE5wSQL1ORAKWe9d7oWO9dspdsLDGKYVQyzip9Zg4EfDB-N0ft_aFHcPhS_3i-jtHoX</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Li, Lianhui</creator><creator>Zheng, Zhuo</creator><creator>Ge, Changlei</creator><creator>Wang, Yongfeng</creator><creator>Dai, Hao</creator><creator>Li, Lili</creator><creator>Wang, Shuqi</creator><creator>Gao, Qiang</creator><creator>Liu, Mengyuan</creator><creator>Sun, Fuqin</creator><creator>Zhang, Ting</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid></search><sort><creationdate>20231001</creationdate><title>A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics</title><author>Li, Lianhui ; Zheng, Zhuo ; Ge, Changlei ; Wang, Yongfeng ; Dai, Hao ; Li, Lili ; Wang, Shuqi ; Gao, Qiang ; Liu, Mengyuan ; Sun, Fuqin ; Zhang, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3019-626ca0eab7ba59dfc54be33042d7ac13fe4951ec24a86595d01056151c269c083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aluminum oxide</topic><topic>Binding</topic><topic>Circuits</topic><topic>Coating</topic><topic>Electric contacts</topic><topic>Electronics</topic><topic>Evaporation</topic><topic>hydrovoltaic coatings</topic><topic>hydrovoltaic effect</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Polyacrylonitrile</topic><topic>self‐powered wearable sensing electronics</topic><topic>toughness</topic><topic>water evaporation</topic><topic>Wearable technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lianhui</creatorcontrib><creatorcontrib>Zheng, Zhuo</creatorcontrib><creatorcontrib>Ge, Changlei</creatorcontrib><creatorcontrib>Wang, Yongfeng</creatorcontrib><creatorcontrib>Dai, Hao</creatorcontrib><creatorcontrib>Li, Lili</creatorcontrib><creatorcontrib>Wang, Shuqi</creatorcontrib><creatorcontrib>Gao, Qiang</creatorcontrib><creatorcontrib>Liu, Mengyuan</creatorcontrib><creatorcontrib>Sun, Fuqin</creatorcontrib><creatorcontrib>Zhang, Ting</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lianhui</au><au>Zheng, Zhuo</au><au>Ge, Changlei</au><au>Wang, Yongfeng</au><au>Dai, Hao</au><au>Li, Lili</au><au>Wang, Shuqi</au><au>Gao, Qiang</au><au>Liu, Mengyuan</au><au>Sun, Fuqin</au><au>Zhang, Ting</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>35</volume><issue>40</issue><spage>e2304099</spage><epage>n/a</epage><pages>e2304099-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The lack of a strong binding mechanism between nanomaterials severely restricts the advantages of the evaporation‐driven hydrovoltaic effect in wearable sensing electronics. It is a challenging task to observably improve the mechanical toughness and flexibility of hydrovoltaic devices to match the wearable demand without abandoning the nanostructures and surface function. Here, a flexible tough polyacrylonitrile/alumina (PAN/Al2O3) hydrovoltaic coating with both good electricity generation (open‐circuit voltage, Voc ≈ 3.18 V) and sensitive ion sensing (2285 V M−1 for NaCl solutions in 10−4 to 10−3 m) capabilities is developed. The porous nanostructure composed of Al2O3 nanoparticles is firmly locked by the strong binding effect of PAN, giving a critical binding force 4 times that of Al2O3 film to easily deal with 9.92 m s−1 strong water‐flow impact. Finally, skin‐tight and non‐contact device structures are proposed to achieve wearable multifunctional self‐powered sensing directly using sweat. The flexible tough PAN/Al2O3 hydrovoltaic coating breaks through the mechanical brittleness limitation and broadens the applications of the evaporation‐induced hydrovoltaic effect in self‐powered wearable sensing electronics.
A flexible tough hydrovoltaic coating with a strong structural binding effect is developed for the simultaneous achievement of good electricity generation (open‐circuit voltage ≈3.18 V) and highly sensitive ion‐sensing ability. Based on skin‐tight and non‐contact device structures, wearable multifunctional self‐powered sensing directly using sweat is demonstrated.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202304099</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5008-2081</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-10, Vol.35 (40), p.e2304099-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2833024824 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Aluminum oxide Binding Circuits Coating Electric contacts Electronics Evaporation hydrovoltaic coatings hydrovoltaic effect Nanomaterials Nanoparticles Nanostructure Polyacrylonitrile self‐powered wearable sensing electronics toughness water evaporation Wearable technology |
title | A Flexible Tough Hydrovoltaic Coating for Wearable Sensing Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A36%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Flexible%20Tough%20Hydrovoltaic%20Coating%20for%20Wearable%20Sensing%20Electronics&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Li,%20Lianhui&rft.date=2023-10-01&rft.volume=35&rft.issue=40&rft.spage=e2304099&rft.epage=n/a&rft.pages=e2304099-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202304099&rft_dat=%3Cproquest_cross%3E2872182127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2872182127&rft_id=info:pmid/&rfr_iscdi=true |