Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles
The majority of waste-heat energy exists in the form of low-grade heat (
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-09, Vol.35 (38), p.e2303199-e2303199 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2303199 |
---|---|
container_issue | 38 |
container_start_page | e2303199 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Choi, Ahreum Song, You-Yeob Kim, Juyoung Kim, Donghyeon Kim, Min-Ho Lee, Seok Woo Seo, Dong-Hwa Lee, Hyun-Wook |
description | The majority of waste-heat energy exists in the form of low-grade heat ( |
doi_str_mv | 10.1002/adma.202303199 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2832842704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2866687534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-68bc3b3d8b15f027a4f73c73d011046c982abd5d4b37ec863a5eb19bbdc66e323</originalsourceid><addsrcrecordid>eNpd0UFr3DAQBWBRWpJNmmuPRdBLL95KGluWjmVxs4WFQpP0aiR5nFWw5a1kp_jaXx6bpDn0NJdvHjM8Qj5wtuWMiS-m6c1WMAEMuNZvyIYXgmc508VbsmEaikzLXJ2Ti5QeGGNaMnlGzqEEXZRCbcjfKhxNcD7c06ptvfMY3EyHlh6GP9l1NA3SPZqR7k18xDSuzs70ZoyTG6doOvrL22hGPwRahTEOp5n6QG-PGHvTdTP9ifcYcBWPSKsO3WLcEXvvlt3d7DpM78m71nQJr17mJbn7Vt3u9tnhx_X33ddD5kDCmEllHVholOVFy0Rp8rYEV0LDOGe5dFoJY5uiyS2U6JQEU6Dl2trGSYkg4JJ8fs49xeH3tDxT9z457DoTcJhSLRQIlYuS5Qv99B99GKYYlusWJaVUZQGr2j4rF4eUIrb1KfrexLnmrF7bqdd26td2loWPL7GT7bF55f_qgCc9O4yJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2866687534</pqid></control><display><type>article</type><title>Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Choi, Ahreum ; Song, You-Yeob ; Kim, Juyoung ; Kim, Donghyeon ; Kim, Min-Ho ; Lee, Seok Woo ; Seo, Dong-Hwa ; Lee, Hyun-Wook</creator><creatorcontrib>Choi, Ahreum ; Song, You-Yeob ; Kim, Juyoung ; Kim, Donghyeon ; Kim, Min-Ho ; Lee, Seok Woo ; Seo, Dong-Hwa ; Lee, Hyun-Wook</creatorcontrib><description>The majority of waste-heat energy exists in the form of low-grade heat (<100°C), which is immensely difficult to convert into usable energy using conventional energy-harvesting systems. Thermally regenerative electrochemical cycles (TREC), which integrate battery and thermal-energy-harvesting functionalities, have been considered an attractive system for low-grade heat harvesting. Herein, we investigate the role of structural vibration modes in enhancing the efficacy of TREC systems. We analyze how changes in bonding covalency, influenced by the amount of structural water molecules, impact the vibration modes. We discover that even small amounts of water molecules can induce the A
stretching mode of cyanide ligands with strong structural vibration energy, which significantly contributes to a larger temperature coefficient (ɑ) in a TREC system. Leveraging these insights, we have designed and implemented a highly efficient TREC system using a sodium-ion-based aqueous electrolyte. Our study provides valuable insights into the potential of TREC systems, offering a deeper understanding of the intrinsic properties of Prussian Blue analogues (PBAs) regulated by structural vibration modes. These insights open up new possibilities for enhancing the energy-harvesting capabilities of TREC systems. This article is protected by copyright. All rights reserved.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202303199</identifier><identifier>PMID: 37395728</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; Battery cycles ; Energy ; Energy harvesting ; Materials science ; Pigments ; Structural vibration ; Vibration analysis ; Vibration mode ; Water chemistry</subject><ispartof>Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303199-e2303199</ispartof><rights>This article is protected by copyright. All rights reserved.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-68bc3b3d8b15f027a4f73c73d011046c982abd5d4b37ec863a5eb19bbdc66e323</citedby><cites>FETCH-LOGICAL-c363t-68bc3b3d8b15f027a4f73c73d011046c982abd5d4b37ec863a5eb19bbdc66e323</cites><orcidid>0000-0001-9074-1619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37395728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Song, You-Yeob</creatorcontrib><creatorcontrib>Kim, Juyoung</creatorcontrib><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Seo, Dong-Hwa</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><title>Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The majority of waste-heat energy exists in the form of low-grade heat (<100°C), which is immensely difficult to convert into usable energy using conventional energy-harvesting systems. Thermally regenerative electrochemical cycles (TREC), which integrate battery and thermal-energy-harvesting functionalities, have been considered an attractive system for low-grade heat harvesting. Herein, we investigate the role of structural vibration modes in enhancing the efficacy of TREC systems. We analyze how changes in bonding covalency, influenced by the amount of structural water molecules, impact the vibration modes. We discover that even small amounts of water molecules can induce the A
stretching mode of cyanide ligands with strong structural vibration energy, which significantly contributes to a larger temperature coefficient (ɑ) in a TREC system. Leveraging these insights, we have designed and implemented a highly efficient TREC system using a sodium-ion-based aqueous electrolyte. Our study provides valuable insights into the potential of TREC systems, offering a deeper understanding of the intrinsic properties of Prussian Blue analogues (PBAs) regulated by structural vibration modes. These insights open up new possibilities for enhancing the energy-harvesting capabilities of TREC systems. This article is protected by copyright. All rights reserved.</description><subject>Aqueous electrolytes</subject><subject>Battery cycles</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Materials science</subject><subject>Pigments</subject><subject>Structural vibration</subject><subject>Vibration analysis</subject><subject>Vibration mode</subject><subject>Water chemistry</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0UFr3DAQBWBRWpJNmmuPRdBLL95KGluWjmVxs4WFQpP0aiR5nFWw5a1kp_jaXx6bpDn0NJdvHjM8Qj5wtuWMiS-m6c1WMAEMuNZvyIYXgmc508VbsmEaikzLXJ2Ti5QeGGNaMnlGzqEEXZRCbcjfKhxNcD7c06ptvfMY3EyHlh6GP9l1NA3SPZqR7k18xDSuzs70ZoyTG6doOvrL22hGPwRahTEOp5n6QG-PGHvTdTP9ifcYcBWPSKsO3WLcEXvvlt3d7DpM78m71nQJr17mJbn7Vt3u9tnhx_X33ddD5kDCmEllHVholOVFy0Rp8rYEV0LDOGe5dFoJY5uiyS2U6JQEU6Dl2trGSYkg4JJ8fs49xeH3tDxT9z457DoTcJhSLRQIlYuS5Qv99B99GKYYlusWJaVUZQGr2j4rF4eUIrb1KfrexLnmrF7bqdd26td2loWPL7GT7bF55f_qgCc9O4yJ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Choi, Ahreum</creator><creator>Song, You-Yeob</creator><creator>Kim, Juyoung</creator><creator>Kim, Donghyeon</creator><creator>Kim, Min-Ho</creator><creator>Lee, Seok Woo</creator><creator>Seo, Dong-Hwa</creator><creator>Lee, Hyun-Wook</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid></search><sort><creationdate>20230901</creationdate><title>Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles</title><author>Choi, Ahreum ; Song, You-Yeob ; Kim, Juyoung ; Kim, Donghyeon ; Kim, Min-Ho ; Lee, Seok Woo ; Seo, Dong-Hwa ; Lee, Hyun-Wook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-68bc3b3d8b15f027a4f73c73d011046c982abd5d4b37ec863a5eb19bbdc66e323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>Battery cycles</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Materials science</topic><topic>Pigments</topic><topic>Structural vibration</topic><topic>Vibration analysis</topic><topic>Vibration mode</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Ahreum</creatorcontrib><creatorcontrib>Song, You-Yeob</creatorcontrib><creatorcontrib>Kim, Juyoung</creatorcontrib><creatorcontrib>Kim, Donghyeon</creatorcontrib><creatorcontrib>Kim, Min-Ho</creatorcontrib><creatorcontrib>Lee, Seok Woo</creatorcontrib><creatorcontrib>Seo, Dong-Hwa</creatorcontrib><creatorcontrib>Lee, Hyun-Wook</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Ahreum</au><au>Song, You-Yeob</au><au>Kim, Juyoung</au><au>Kim, Donghyeon</au><au>Kim, Min-Ho</au><au>Lee, Seok Woo</au><au>Seo, Dong-Hwa</au><au>Lee, Hyun-Wook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>35</volume><issue>38</issue><spage>e2303199</spage><epage>e2303199</epage><pages>e2303199-e2303199</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The majority of waste-heat energy exists in the form of low-grade heat (<100°C), which is immensely difficult to convert into usable energy using conventional energy-harvesting systems. Thermally regenerative electrochemical cycles (TREC), which integrate battery and thermal-energy-harvesting functionalities, have been considered an attractive system for low-grade heat harvesting. Herein, we investigate the role of structural vibration modes in enhancing the efficacy of TREC systems. We analyze how changes in bonding covalency, influenced by the amount of structural water molecules, impact the vibration modes. We discover that even small amounts of water molecules can induce the A
stretching mode of cyanide ligands with strong structural vibration energy, which significantly contributes to a larger temperature coefficient (ɑ) in a TREC system. Leveraging these insights, we have designed and implemented a highly efficient TREC system using a sodium-ion-based aqueous electrolyte. Our study provides valuable insights into the potential of TREC systems, offering a deeper understanding of the intrinsic properties of Prussian Blue analogues (PBAs) regulated by structural vibration modes. These insights open up new possibilities for enhancing the energy-harvesting capabilities of TREC systems. This article is protected by copyright. All rights reserved.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37395728</pmid><doi>10.1002/adma.202303199</doi><orcidid>https://orcid.org/0000-0001-9074-1619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-09, Vol.35 (38), p.e2303199-e2303199 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2832842704 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Aqueous electrolytes Battery cycles Energy Energy harvesting Materials science Pigments Structural vibration Vibration analysis Vibration mode Water chemistry |
title | Enhancing Efficiency of Low-Grade Heat Harvesting by Structural Vibration Entropy in Thermally Regenerative Electrochemical Cycles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T09%3A14%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20Efficiency%20of%20Low-Grade%20Heat%20Harvesting%20by%20Structural%20Vibration%20Entropy%20in%20Thermally%20Regenerative%20Electrochemical%20Cycles&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Choi,%20Ahreum&rft.date=2023-09-01&rft.volume=35&rft.issue=38&rft.spage=e2303199&rft.epage=e2303199&rft.pages=e2303199-e2303199&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202303199&rft_dat=%3Cproquest_cross%3E2866687534%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2866687534&rft_id=info:pmid/37395728&rfr_iscdi=true |