Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling
Key message We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers. Grain filling capacity is essential for grain yield and appearance quality in cereal cro...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied genetics 2023-07, Vol.136 (7), p.165-165, Article 165 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 165 |
---|---|
container_issue | 7 |
container_start_page | 165 |
container_title | Theoretical and applied genetics |
container_volume | 136 |
creator | Liu, Bingyan Li, Lingli Fu, Chao Zhang, Yingjun Bai, Bin Du, Jiuyuan Zeng, Jianqi Bian, Yingjie Liu, Siyang Song, Jie Luo, Xumei Xie, Lina Sun, Mengjing Xu, Xiaowan Xia, Xianchun Cao, Shuanghe |
description | Key message
We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers.
Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m
2
. Among them,
QDGF.caas-7A
is co-located with
QTGW.caas-7A
and can explain 39.4–64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that
TaSus2-2B
and
Rht-B1
were candidate genes for
QTGW.caas-2B
and the QTL cluster (
QTGW.caas-4B
,
QGNS.caas-4B
, and
QSN.caas-4B
), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding. |
doi_str_mv | 10.1007/s00122-023-04410-1 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2832571030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755542397</galeid><sourcerecordid>A755542397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-6166cb97d436f8f30a431846f7563f0d379116c9e4835448fc760994cada49773</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEokvhD3BAlrjAIWX8kTg5VhWUSpWQ-DhbrjPOukrsxXZa9t_jZReqRQj54MM87zue8VtVLymcUQD5LgFQxmpgvAYhKNT0UbWigrOaMcEeVysAAXUjG3ZSPUvpFgBYA_xpdcIl7wsDq2p9iR6zM2RwKaHJLngSLBmjdp7MIW7WYQrjlmg_kK3DaSAmzJvg0edECqLJ_Rp1JpPzSO5dXpMB7c7nDg8m1k2lOD6vnlg9JXxxuE-rbx_ef734WF9_ury6OL-ujZBtrlvatuaml4Pgre0sBy047URrZdNyCwOXPaWt6VF0vBGis0a20PfC6EGLXkp-Wr3Z-25i-L5gymp2yeA0aY9hSYp1nDWSAoeCvv4LvQ1L9OV1O4p2XVdaPVCjnlA5b0OO2uxM1blsmkYw3u_anv2DKmfA2Zmyr7IGPBa8PRIUJuOPPOolJXX15fMxy_asiSGliFZtopt13CoKahcFtY-CKlFQv6KgaBG9Oky33Mw4_JH8_vsC8D2QSsmPGB_G_4_tTxUauq8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831888116</pqid></control><display><type>article</type><title>Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Liu, Bingyan ; Li, Lingli ; Fu, Chao ; Zhang, Yingjun ; Bai, Bin ; Du, Jiuyuan ; Zeng, Jianqi ; Bian, Yingjie ; Liu, Siyang ; Song, Jie ; Luo, Xumei ; Xie, Lina ; Sun, Mengjing ; Xu, Xiaowan ; Xia, Xianchun ; Cao, Shuanghe</creator><creatorcontrib>Liu, Bingyan ; Li, Lingli ; Fu, Chao ; Zhang, Yingjun ; Bai, Bin ; Du, Jiuyuan ; Zeng, Jianqi ; Bian, Yingjie ; Liu, Siyang ; Song, Jie ; Luo, Xumei ; Xie, Lina ; Sun, Mengjing ; Xu, Xiaowan ; Xia, Xianchun ; Cao, Shuanghe</creatorcontrib><description>Key message
We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers.
Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m
2
. Among them,
QDGF.caas-7A
is co-located with
QTGW.caas-7A
and can explain 39.4–64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that
TaSus2-2B
and
Rht-B1
were candidate genes for
QTGW.caas-2B
and the QTL cluster (
QTGW.caas-4B
,
QGNS.caas-4B
, and
QSN.caas-4B
), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.</description><identifier>ISSN: 0040-5752</identifier><identifier>EISSN: 1432-2242</identifier><identifier>DOI: 10.1007/s00122-023-04410-1</identifier><identifier>PMID: 37392240</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agriculture ; Analysis ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Crops, Agricultural ; Cultivars ; Edible Grain - genetics ; Gene mapping ; Genetic aspects ; Genetic diversity ; Grain ; Life Sciences ; Morphology ; Original Article ; Plant Biochemistry ; Plant Breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Production management ; Quantitative genetics ; Quantitative Trait Loci ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Triticum - genetics ; Wheat</subject><ispartof>Theoretical and applied genetics, 2023-07, Vol.136 (7), p.165-165, Article 165</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-6166cb97d436f8f30a431846f7563f0d379116c9e4835448fc760994cada49773</citedby><cites>FETCH-LOGICAL-c476t-6166cb97d436f8f30a431846f7563f0d379116c9e4835448fc760994cada49773</cites><orcidid>0000-0002-2905-0728</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00122-023-04410-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00122-023-04410-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27933,27934,41497,42566,51328</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37392240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bingyan</creatorcontrib><creatorcontrib>Li, Lingli</creatorcontrib><creatorcontrib>Fu, Chao</creatorcontrib><creatorcontrib>Zhang, Yingjun</creatorcontrib><creatorcontrib>Bai, Bin</creatorcontrib><creatorcontrib>Du, Jiuyuan</creatorcontrib><creatorcontrib>Zeng, Jianqi</creatorcontrib><creatorcontrib>Bian, Yingjie</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Luo, Xumei</creatorcontrib><creatorcontrib>Xie, Lina</creatorcontrib><creatorcontrib>Sun, Mengjing</creatorcontrib><creatorcontrib>Xu, Xiaowan</creatorcontrib><creatorcontrib>Xia, Xianchun</creatorcontrib><creatorcontrib>Cao, Shuanghe</creatorcontrib><title>Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling</title><title>Theoretical and applied genetics</title><addtitle>Theor Appl Genet</addtitle><addtitle>Theor Appl Genet</addtitle><description>Key message
We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers.
Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m
2
. Among them,
QDGF.caas-7A
is co-located with
QTGW.caas-7A
and can explain 39.4–64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that
TaSus2-2B
and
Rht-B1
were candidate genes for
QTGW.caas-2B
and the QTL cluster (
QTGW.caas-4B
,
QGNS.caas-4B
, and
QSN.caas-4B
), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.</description><subject>Agriculture</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Crops, Agricultural</subject><subject>Cultivars</subject><subject>Edible Grain - genetics</subject><subject>Gene mapping</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Grain</subject><subject>Life Sciences</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Plant Biochemistry</subject><subject>Plant Breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Production management</subject><subject>Quantitative genetics</subject><subject>Quantitative Trait Loci</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Triticum - genetics</subject><subject>Wheat</subject><issn>0040-5752</issn><issn>1432-2242</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kk1v1DAQhiMEokvhD3BAlrjAIWX8kTg5VhWUSpWQ-DhbrjPOukrsxXZa9t_jZReqRQj54MM87zue8VtVLymcUQD5LgFQxmpgvAYhKNT0UbWigrOaMcEeVysAAXUjG3ZSPUvpFgBYA_xpdcIl7wsDq2p9iR6zM2RwKaHJLngSLBmjdp7MIW7WYQrjlmg_kK3DaSAmzJvg0edECqLJ_Rp1JpPzSO5dXpMB7c7nDg8m1k2lOD6vnlg9JXxxuE-rbx_ef734WF9_ury6OL-ujZBtrlvatuaml4Pgre0sBy047URrZdNyCwOXPaWt6VF0vBGis0a20PfC6EGLXkp-Wr3Z-25i-L5gymp2yeA0aY9hSYp1nDWSAoeCvv4LvQ1L9OV1O4p2XVdaPVCjnlA5b0OO2uxM1blsmkYw3u_anv2DKmfA2Zmyr7IGPBa8PRIUJuOPPOolJXX15fMxy_asiSGliFZtopt13CoKahcFtY-CKlFQv6KgaBG9Oky33Mw4_JH8_vsC8D2QSsmPGB_G_4_tTxUauq8</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Liu, Bingyan</creator><creator>Li, Lingli</creator><creator>Fu, Chao</creator><creator>Zhang, Yingjun</creator><creator>Bai, Bin</creator><creator>Du, Jiuyuan</creator><creator>Zeng, Jianqi</creator><creator>Bian, Yingjie</creator><creator>Liu, Siyang</creator><creator>Song, Jie</creator><creator>Luo, Xumei</creator><creator>Xie, Lina</creator><creator>Sun, Mengjing</creator><creator>Xu, Xiaowan</creator><creator>Xia, Xianchun</creator><creator>Cao, Shuanghe</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2905-0728</orcidid></search><sort><creationdate>20230701</creationdate><title>Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling</title><author>Liu, Bingyan ; Li, Lingli ; Fu, Chao ; Zhang, Yingjun ; Bai, Bin ; Du, Jiuyuan ; Zeng, Jianqi ; Bian, Yingjie ; Liu, Siyang ; Song, Jie ; Luo, Xumei ; Xie, Lina ; Sun, Mengjing ; Xu, Xiaowan ; Xia, Xianchun ; Cao, Shuanghe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-6166cb97d436f8f30a431846f7563f0d379116c9e4835448fc760994cada49773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Agriculture</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Crops, Agricultural</topic><topic>Cultivars</topic><topic>Edible Grain - genetics</topic><topic>Gene mapping</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Grain</topic><topic>Life Sciences</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Plant Biochemistry</topic><topic>Plant Breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Production management</topic><topic>Quantitative genetics</topic><topic>Quantitative Trait Loci</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Triticum - genetics</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bingyan</creatorcontrib><creatorcontrib>Li, Lingli</creatorcontrib><creatorcontrib>Fu, Chao</creatorcontrib><creatorcontrib>Zhang, Yingjun</creatorcontrib><creatorcontrib>Bai, Bin</creatorcontrib><creatorcontrib>Du, Jiuyuan</creatorcontrib><creatorcontrib>Zeng, Jianqi</creatorcontrib><creatorcontrib>Bian, Yingjie</creatorcontrib><creatorcontrib>Liu, Siyang</creatorcontrib><creatorcontrib>Song, Jie</creatorcontrib><creatorcontrib>Luo, Xumei</creatorcontrib><creatorcontrib>Xie, Lina</creatorcontrib><creatorcontrib>Sun, Mengjing</creatorcontrib><creatorcontrib>Xu, Xiaowan</creatorcontrib><creatorcontrib>Xia, Xianchun</creatorcontrib><creatorcontrib>Cao, Shuanghe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Theoretical and applied genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bingyan</au><au>Li, Lingli</au><au>Fu, Chao</au><au>Zhang, Yingjun</au><au>Bai, Bin</au><au>Du, Jiuyuan</au><au>Zeng, Jianqi</au><au>Bian, Yingjie</au><au>Liu, Siyang</au><au>Song, Jie</au><au>Luo, Xumei</au><au>Xie, Lina</au><au>Sun, Mengjing</au><au>Xu, Xiaowan</au><au>Xia, Xianchun</au><au>Cao, Shuanghe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling</atitle><jtitle>Theoretical and applied genetics</jtitle><stitle>Theor Appl Genet</stitle><addtitle>Theor Appl Genet</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>136</volume><issue>7</issue><spage>165</spage><epage>165</epage><pages>165-165</pages><artnum>165</artnum><issn>0040-5752</issn><eissn>1432-2242</eissn><abstract>Key message
We identified stable QTL for grain morphology and yield component traits in a wheat defective grain filling line and validated genetic effects in a panel of cultivars using breeding-relevant markers.
Grain filling capacity is essential for grain yield and appearance quality in cereal crops. Identification of genetic loci for grain filling is important for wheat improvement. However, there are few genetic studies on grain filling in wheat. Here, a defective grain filling (DGF) line wdgf1 characterized by shrunken grains was identified in a population derived from multi-round crosses involving nine parents and a recombinant inbreed line (RIL) population was generated from the cross between wdgf1 and a sister line with normal grains. We constructed a genetic map of the RIL population using the wheat 15K single nucleotide polymorphism chip and detected 25 stable quantitative trait loci (QTL) for grain morphology and yield components, including three for DGF, eleven for grain size, six for thousand grain weight, three for grain number per spike and two for spike number per m
2
. Among them,
QDGF.caas-7A
is co-located with
QTGW.caas-7A
and can explain 39.4–64.6% of the phenotypic variances, indicating that this QTL is a major locus controlling DGF. Sequencing and linkage mapping showed that
TaSus2-2B
and
Rht-B1
were candidate genes for
QTGW.caas-2B
and the QTL cluster (
QTGW.caas-4B
,
QGNS.caas-4B
, and
QSN.caas-4B
), respectively. We developed kompetitive allele-specific PCR markers tightly linked to the stable QTL without corresponding to known yield-related genes, and validated their genetic effects in a diverse panel of wheat cultivars. These findings not only lay a solid foundation for genetic dissection underlying grain filling and yield formation, but also provide useful tools for marker-assisted breeding.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>37392240</pmid><doi>10.1007/s00122-023-04410-1</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2905-0728</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5752 |
ispartof | Theoretical and applied genetics, 2023-07, Vol.136 (7), p.165-165, Article 165 |
issn | 0040-5752 1432-2242 |
language | eng |
recordid | cdi_proquest_miscellaneous_2832571030 |
source | MEDLINE; SpringerNature Journals |
subjects | Agriculture Analysis Biochemistry Biomedical and Life Sciences Biotechnology Crops, Agricultural Cultivars Edible Grain - genetics Gene mapping Genetic aspects Genetic diversity Grain Life Sciences Morphology Original Article Plant Biochemistry Plant Breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Production management Quantitative genetics Quantitative Trait Loci Single nucleotide polymorphisms Single-nucleotide polymorphism Triticum - genetics Wheat |
title | Genetic dissection of grain morphology and yield components in a wheat line with defective grain filling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T03%3A21%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20dissection%20of%20grain%20morphology%20and%20yield%20components%20in%20a%20wheat%20line%20with%20defective%20grain%20filling&rft.jtitle=Theoretical%20and%20applied%20genetics&rft.au=Liu,%20Bingyan&rft.date=2023-07-01&rft.volume=136&rft.issue=7&rft.spage=165&rft.epage=165&rft.pages=165-165&rft.artnum=165&rft.issn=0040-5752&rft.eissn=1432-2242&rft_id=info:doi/10.1007/s00122-023-04410-1&rft_dat=%3Cgale_proqu%3EA755542397%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831888116&rft_id=info:pmid/37392240&rft_galeid=A755542397&rfr_iscdi=true |