Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance
The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2004-11, Vol.10 (11), p.1663-1697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1697 |
---|---|
container_issue | 11 |
container_start_page | 1663 |
container_title | Journal of vibration and control |
container_volume | 10 |
creator | Bajaj, Anil K. Davies, Patricia Banerjee, Bappaditya |
description | The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance. The slowly evolving averaged equations are numerically studied for motions initiated in the vicinity of stationary responses, and observations are made about the nature of responses of the system near the transition from single-mode to coupled-mode solutions (pitchfork points), and near jump and Hopf bifurcations in the coupled-mode solutions. An analytical technique based on the dynamic bifurcation theory is developed to explain the numerical observations for passage through the bifurcations. A numerical study is carried out to determine the effects of system parameters on the dynamics near the pitchfork bifurcation points and results are compared with analytical and numerical descriptions of dynamics. |
doi_str_mv | 10.1177/1077546304042056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28316301</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546304042056</sage_id><sourcerecordid>28316301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-8c95bc6d76726b9f6eae0b6c498efa40dd724a2845b74b9430799ae4c79789253</originalsourceid><addsrcrecordid>eNp1kcFLwzAUxosoOKd3j8GDt2iSpk3jTeamg6Hg5rmk6evsaJPZZMz996ZUEAae3gfv9773-F4UXVNyR6kQ95QIkfA0JpxwRpL0JBpRwSlmMktPgw5t3PfPowvnNoQQzikZRf7VGrz0ytfWqO6A3sFtrXHgUG3Q9NtDZ1TTHILUtYcSrfYWP8G6A3DYVngWRGlbFFya2oDq0PLgPLQO7Wv_iegDYmhuBpfeOywxGi6js0o1Dq5-6zj6mE1Xkxe8eHueTx4XWMex8DjTMil0WopUsLSQVQoKSJFqLjOoFCdlKRhXLONJIXgheUyElAq4FlJkkiXxOLodfLed_dqB83lbOw1NowzYnctZFtOQGA3gzRG4sbv-5sAwSkKQcRwgMkC6s851UOXbrm5DaDklef-D_PgHYQQPI06t4c_zX_4H5caFvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221017433</pqid></control><display><type>article</type><title>Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance</title><source>Access via SAGE</source><creator>Bajaj, Anil K. ; Davies, Patricia ; Banerjee, Bappaditya</creator><creatorcontrib>Bajaj, Anil K. ; Davies, Patricia ; Banerjee, Bappaditya</creatorcontrib><description>The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance. The slowly evolving averaged equations are numerically studied for motions initiated in the vicinity of stationary responses, and observations are made about the nature of responses of the system near the transition from single-mode to coupled-mode solutions (pitchfork points), and near jump and Hopf bifurcations in the coupled-mode solutions. An analytical technique based on the dynamic bifurcation theory is developed to explain the numerical observations for passage through the bifurcations. A numerical study is carried out to determine the effects of system parameters on the dynamics near the pitchfork bifurcation points and results are compared with analytical and numerical descriptions of dynamics.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546304042056</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Vibration</subject><ispartof>Journal of vibration and control, 2004-11, Vol.10 (11), p.1663-1697</ispartof><rights>Copyright SAGE PUBLICATIONS, INC. Nov 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-8c95bc6d76726b9f6eae0b6c498efa40dd724a2845b74b9430799ae4c79789253</citedby><cites>FETCH-LOGICAL-c337t-8c95bc6d76726b9f6eae0b6c498efa40dd724a2845b74b9430799ae4c79789253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546304042056$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546304042056$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Bajaj, Anil K.</creatorcontrib><creatorcontrib>Davies, Patricia</creatorcontrib><creatorcontrib>Banerjee, Bappaditya</creatorcontrib><title>Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance</title><title>Journal of vibration and control</title><description>The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance. The slowly evolving averaged equations are numerically studied for motions initiated in the vicinity of stationary responses, and observations are made about the nature of responses of the system near the transition from single-mode to coupled-mode solutions (pitchfork points), and near jump and Hopf bifurcations in the coupled-mode solutions. An analytical technique based on the dynamic bifurcation theory is developed to explain the numerical observations for passage through the bifurcations. A numerical study is carried out to determine the effects of system parameters on the dynamics near the pitchfork bifurcation points and results are compared with analytical and numerical descriptions of dynamics.</description><subject>Vibration</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kcFLwzAUxosoOKd3j8GDt2iSpk3jTeamg6Hg5rmk6evsaJPZZMz996ZUEAae3gfv9773-F4UXVNyR6kQ95QIkfA0JpxwRpL0JBpRwSlmMktPgw5t3PfPowvnNoQQzikZRf7VGrz0ytfWqO6A3sFtrXHgUG3Q9NtDZ1TTHILUtYcSrfYWP8G6A3DYVngWRGlbFFya2oDq0PLgPLQO7Wv_iegDYmhuBpfeOywxGi6js0o1Dq5-6zj6mE1Xkxe8eHueTx4XWMex8DjTMil0WopUsLSQVQoKSJFqLjOoFCdlKRhXLONJIXgheUyElAq4FlJkkiXxOLodfLed_dqB83lbOw1NowzYnctZFtOQGA3gzRG4sbv-5sAwSkKQcRwgMkC6s851UOXbrm5DaDklef-D_PgHYQQPI06t4c_zX_4H5caFvg</recordid><startdate>200411</startdate><enddate>200411</enddate><creator>Bajaj, Anil K.</creator><creator>Davies, Patricia</creator><creator>Banerjee, Bappaditya</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7U5</scope><scope>H8D</scope></search><sort><creationdate>200411</creationdate><title>Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance</title><author>Bajaj, Anil K. ; Davies, Patricia ; Banerjee, Bappaditya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-8c95bc6d76726b9f6eae0b6c498efa40dd724a2845b74b9430799ae4c79789253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bajaj, Anil K.</creatorcontrib><creatorcontrib>Davies, Patricia</creatorcontrib><creatorcontrib>Banerjee, Bappaditya</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Aerospace Database</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bajaj, Anil K.</au><au>Davies, Patricia</au><au>Banerjee, Bappaditya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance</atitle><jtitle>Journal of vibration and control</jtitle><date>2004-11</date><risdate>2004</risdate><volume>10</volume><issue>11</issue><spage>1663</spage><epage>1697</epage><pages>1663-1697</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>The dynamics of two-degrees-of-freedom dynamical systems with weak quadratic nonlinearities is analyzed in the neighborhood of bifurcation points when the excitation frequency varies slowly through the region of primary resonance. The two modes of vibration are in 1: 2 subharmonic internal resonance. The slowly evolving averaged equations are numerically studied for motions initiated in the vicinity of stationary responses, and observations are made about the nature of responses of the system near the transition from single-mode to coupled-mode solutions (pitchfork points), and near jump and Hopf bifurcations in the coupled-mode solutions. An analytical technique based on the dynamic bifurcation theory is developed to explain the numerical observations for passage through the bifurcations. A numerical study is carried out to determine the effects of system parameters on the dynamics near the pitchfork bifurcation points and results are compared with analytical and numerical descriptions of dynamics.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/1077546304042056</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2004-11, Vol.10 (11), p.1663-1697 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_miscellaneous_28316301 |
source | Access via SAGE |
subjects | Vibration |
title | Non-Stationary Responses in Externally Excited Two-Degrees-of-Freedom Nonlinear Systems with 1: 2 Internal Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Stationary%20Responses%20in%20Externally%20Excited%20Two-Degrees-of-Freedom%20Nonlinear%20Systems%20with%201:%202%20Internal%20Resonance&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Bajaj,%20Anil%20K.&rft.date=2004-11&rft.volume=10&rft.issue=11&rft.spage=1663&rft.epage=1697&rft.pages=1663-1697&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546304042056&rft_dat=%3Cproquest_cross%3E28316301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221017433&rft_id=info:pmid/&rft_sage_id=10.1177_1077546304042056&rfr_iscdi=true |