Geometrical and performance analysis of GMD and Chase decoding algorithms

The overall number of nearest neighbors in bounded distance decoding (BDD) algorithms is given by N/sub 0,eff/=N/sub 0/+N/sub BDD/. Where NBDD denotes the number of additional, non-codeword, neighbors that are generated during the (suboptimal) decoding process. We identify and enumerate the nearest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1999-07, Vol.45 (5), p.1406-1422
Hauptverfasser: Fishler, E., Amrani, O., Be'ery, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1422
container_issue 5
container_start_page 1406
container_title IEEE transactions on information theory
container_volume 45
creator Fishler, E.
Amrani, O.
Be'ery, Y.
description The overall number of nearest neighbors in bounded distance decoding (BDD) algorithms is given by N/sub 0,eff/=N/sub 0/+N/sub BDD/. Where NBDD denotes the number of additional, non-codeword, neighbors that are generated during the (suboptimal) decoding process. We identify and enumerate the nearest neighbors associated with the original generalized minimum distance (GMD) and Chase (1972) decoding algorithms. After careful examination of the decision regions of these algorithms, we derive an approximated probability ratio between the error contribution of a noncodeword neighbor (one of N/sub BDD/ points) and a codeword nearest neighbor. For Chase algorithm 1 it is shown that the contribution to the error probability of a noncodeword nearest neighbor is a factor of 2/sup d-1/ less than the contribution of a codeword, while for Chase algorithm 2 the factor is 2/sup [d/2]-1/, d being the minimum Hamming distance of the code. For Chase algorithm 3 and GMD, a recursive procedure for calculating this ratio, which turns out to be nonexponential in d, is presented. This procedure can also be used for specifically identifying the error patterns associated with Chase algorithm 3 and GMD. Utilizing the probability ratio, we propose an improved approximated upper bound on the probability of error based on the union bound approach. Simulation results are given to demonstrate and support the analytical derivations.
doi_str_mv 10.1109/18.771143
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28315452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>771143</ieee_id><sourcerecordid>43295166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-88917fc2cde9b788b55a43a70bd561a7fd9c516b7f781d7c5481d490543f441a3</originalsourceid><addsrcrecordid>eNpd0DFPwzAQBWALgUQpDKxMEQMSQ4ovsWt7RC2USkUsMFuOc25TJXGx06H_npRUDExPp_fppDtCboFOAKh6AjkRAoDlZ2QEnItUTTk7JyNKQaaKMXlJrmLc9iPjkI3IcoG-wS5U1tSJactkh8H50JjWYj-b-hCrmHiXLN7nv_1sYyImJVpfVu06MfXah6rbNPGaXDhTR7w55Zh8vb58zt7S1cdiOXtepTanrEulVCCczWyJqhBSFpwblhtBi5JPwQhXKsthWggnJJTCctYHU5Sz3DEGJh-Th2HvLvjvPcZON1W0WNemRb-POpM5cMazHt7_g1u_D_1JUYPiCjjNj-hxQDb4GAM6vQtVY8JBA9XHj2qQevhob-8GWyHinzuVP84NbuM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195915032</pqid></control><display><type>article</type><title>Geometrical and performance analysis of GMD and Chase decoding algorithms</title><source>IEEE Electronic Library (IEL)</source><creator>Fishler, E. ; Amrani, O. ; Be'ery, Y.</creator><creatorcontrib>Fishler, E. ; Amrani, O. ; Be'ery, Y.</creatorcontrib><description>The overall number of nearest neighbors in bounded distance decoding (BDD) algorithms is given by N/sub 0,eff/=N/sub 0/+N/sub BDD/. Where NBDD denotes the number of additional, non-codeword, neighbors that are generated during the (suboptimal) decoding process. We identify and enumerate the nearest neighbors associated with the original generalized minimum distance (GMD) and Chase (1972) decoding algorithms. After careful examination of the decision regions of these algorithms, we derive an approximated probability ratio between the error contribution of a noncodeword neighbor (one of N/sub BDD/ points) and a codeword nearest neighbor. For Chase algorithm 1 it is shown that the contribution to the error probability of a noncodeword nearest neighbor is a factor of 2/sup d-1/ less than the contribution of a codeword, while for Chase algorithm 2 the factor is 2/sup [d/2]-1/, d being the minimum Hamming distance of the code. For Chase algorithm 3 and GMD, a recursive procedure for calculating this ratio, which turns out to be nonexponential in d, is presented. This procedure can also be used for specifically identifying the error patterns associated with Chase algorithm 3 and GMD. Utilizing the probability ratio, we propose an improved approximated upper bound on the probability of error based on the union bound approach. Simulation results are given to demonstrate and support the analytical derivations.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.771143</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer science ; Data transmission ; Decoding</subject><ispartof>IEEE transactions on information theory, 1999-07, Vol.45 (5), p.1406-1422</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-88917fc2cde9b788b55a43a70bd561a7fd9c516b7f781d7c5481d490543f441a3</citedby><cites>FETCH-LOGICAL-c304t-88917fc2cde9b788b55a43a70bd561a7fd9c516b7f781d7c5481d490543f441a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/771143$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/771143$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fishler, E.</creatorcontrib><creatorcontrib>Amrani, O.</creatorcontrib><creatorcontrib>Be'ery, Y.</creatorcontrib><title>Geometrical and performance analysis of GMD and Chase decoding algorithms</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The overall number of nearest neighbors in bounded distance decoding (BDD) algorithms is given by N/sub 0,eff/=N/sub 0/+N/sub BDD/. Where NBDD denotes the number of additional, non-codeword, neighbors that are generated during the (suboptimal) decoding process. We identify and enumerate the nearest neighbors associated with the original generalized minimum distance (GMD) and Chase (1972) decoding algorithms. After careful examination of the decision regions of these algorithms, we derive an approximated probability ratio between the error contribution of a noncodeword neighbor (one of N/sub BDD/ points) and a codeword nearest neighbor. For Chase algorithm 1 it is shown that the contribution to the error probability of a noncodeword nearest neighbor is a factor of 2/sup d-1/ less than the contribution of a codeword, while for Chase algorithm 2 the factor is 2/sup [d/2]-1/, d being the minimum Hamming distance of the code. For Chase algorithm 3 and GMD, a recursive procedure for calculating this ratio, which turns out to be nonexponential in d, is presented. This procedure can also be used for specifically identifying the error patterns associated with Chase algorithm 3 and GMD. Utilizing the probability ratio, we propose an improved approximated upper bound on the probability of error based on the union bound approach. Simulation results are given to demonstrate and support the analytical derivations.</description><subject>Algorithms</subject><subject>Computer science</subject><subject>Data transmission</subject><subject>Decoding</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpd0DFPwzAQBWALgUQpDKxMEQMSQ4ovsWt7RC2USkUsMFuOc25TJXGx06H_npRUDExPp_fppDtCboFOAKh6AjkRAoDlZ2QEnItUTTk7JyNKQaaKMXlJrmLc9iPjkI3IcoG-wS5U1tSJactkh8H50JjWYj-b-hCrmHiXLN7nv_1sYyImJVpfVu06MfXah6rbNPGaXDhTR7w55Zh8vb58zt7S1cdiOXtepTanrEulVCCczWyJqhBSFpwblhtBi5JPwQhXKsthWggnJJTCctYHU5Sz3DEGJh-Th2HvLvjvPcZON1W0WNemRb-POpM5cMazHt7_g1u_D_1JUYPiCjjNj-hxQDb4GAM6vQtVY8JBA9XHj2qQevhob-8GWyHinzuVP84NbuM</recordid><startdate>19990701</startdate><enddate>19990701</enddate><creator>Fishler, E.</creator><creator>Amrani, O.</creator><creator>Be'ery, Y.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19990701</creationdate><title>Geometrical and performance analysis of GMD and Chase decoding algorithms</title><author>Fishler, E. ; Amrani, O. ; Be'ery, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-88917fc2cde9b788b55a43a70bd561a7fd9c516b7f781d7c5481d490543f441a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Algorithms</topic><topic>Computer science</topic><topic>Data transmission</topic><topic>Decoding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fishler, E.</creatorcontrib><creatorcontrib>Amrani, O.</creatorcontrib><creatorcontrib>Be'ery, Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fishler, E.</au><au>Amrani, O.</au><au>Be'ery, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical and performance analysis of GMD and Chase decoding algorithms</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1999-07-01</date><risdate>1999</risdate><volume>45</volume><issue>5</issue><spage>1406</spage><epage>1422</epage><pages>1406-1422</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The overall number of nearest neighbors in bounded distance decoding (BDD) algorithms is given by N/sub 0,eff/=N/sub 0/+N/sub BDD/. Where NBDD denotes the number of additional, non-codeword, neighbors that are generated during the (suboptimal) decoding process. We identify and enumerate the nearest neighbors associated with the original generalized minimum distance (GMD) and Chase (1972) decoding algorithms. After careful examination of the decision regions of these algorithms, we derive an approximated probability ratio between the error contribution of a noncodeword neighbor (one of N/sub BDD/ points) and a codeword nearest neighbor. For Chase algorithm 1 it is shown that the contribution to the error probability of a noncodeword nearest neighbor is a factor of 2/sup d-1/ less than the contribution of a codeword, while for Chase algorithm 2 the factor is 2/sup [d/2]-1/, d being the minimum Hamming distance of the code. For Chase algorithm 3 and GMD, a recursive procedure for calculating this ratio, which turns out to be nonexponential in d, is presented. This procedure can also be used for specifically identifying the error patterns associated with Chase algorithm 3 and GMD. Utilizing the probability ratio, we propose an improved approximated upper bound on the probability of error based on the union bound approach. Simulation results are given to demonstrate and support the analytical derivations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.771143</doi><tpages>17</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1999-07, Vol.45 (5), p.1406-1422
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28315452
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer science
Data transmission
Decoding
title Geometrical and performance analysis of GMD and Chase decoding algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A30%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20and%20performance%20analysis%20of%20GMD%20and%20Chase%20decoding%20algorithms&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fishler,%20E.&rft.date=1999-07-01&rft.volume=45&rft.issue=5&rft.spage=1406&rft.epage=1422&rft.pages=1406-1422&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.771143&rft_dat=%3Cproquest_RIE%3E43295166%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195915032&rft_id=info:pmid/&rft_ieee_id=771143&rfr_iscdi=true