Molecular Highway Patrol for Ribosome Collisions

During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2023-10, Vol.24 (20), p.e202300264-n/a
Hauptverfasser: Iyer, Kaushik Viswanathan, Müller, Max, Tittel, Lena Sophie, Winz, Marie‐Luise
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e202300264
container_title Chembiochem : a European journal of chemical biology
container_volume 24
creator Iyer, Kaushik Viswanathan
Müller, Max
Tittel, Lena Sophie
Winz, Marie‐Luise
description During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions. The discovery of ribosome collisions as the recognition platform of translation problems caused by various factors represents a cornerstone in the field of translation surveillance. We summarize our current knowledge about the pathways that target collided ribosomes. These pathways do so directly ‐ by removing or recycling ribosomes, peptides, and mRNA ‐ or indirectly ‐ by modulating translation and cellular fate.
doi_str_mv 10.1002/cbic.202300264
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2831298415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831298415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4134-545a0c2ac64e9f1b1cd460579ff4c6ef84d36d22f26558d936411f05e17674d83</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMobk6vHqXgxUtnvpomRy1-DCaK6DmkaaIZ6TKTlbF_b8fmBC-e8gae9-HlAeAcwTGCEF_r2ukxhpj0H0YPwBBRIvKSEXK4mynG5QCcpDSDEApG0DEYkJJwjLgYAvgUvNGdVzF7dB-fK7XOXtQyBp_ZELNXV4cUWpNVwXuXXJinU3BklU_mbPeOwPv93Vv1mE-fHybVzTTXFBGaF7RQUGOlGTXCohrphjJYlMJaqpmxnDaENRhbzIqCN4IwipCFhUElK2nDyQhcbb2LGL46k5aydUkb79XchC5JzAnCglNU9OjlH3QWujjvr-upkiOBiMA9Nd5SOoaUorFyEV2r4loiKDct5aal3LfsFy522q5uTbPHf-L1gNgCK-fN-h-drG4n1a_8GwAifXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2878191392</pqid></control><display><type>article</type><title>Molecular Highway Patrol for Ribosome Collisions</title><source>Wiley Online Library All Journals</source><creator>Iyer, Kaushik Viswanathan ; Müller, Max ; Tittel, Lena Sophie ; Winz, Marie‐Luise</creator><creatorcontrib>Iyer, Kaushik Viswanathan ; Müller, Max ; Tittel, Lena Sophie ; Winz, Marie‐Luise</creatorcontrib><description>During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions. The discovery of ribosome collisions as the recognition platform of translation problems caused by various factors represents a cornerstone in the field of translation surveillance. We summarize our current knowledge about the pathways that target collided ribosomes. These pathways do so directly ‐ by removing or recycling ribosomes, peptides, and mRNA ‐ or indirectly ‐ by modulating translation and cellular fate.</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202300264</identifier><identifier>PMID: 37382189</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cell survival ; Cellular stress response ; Chemical composition ; Chemical damage ; Collisions ; Eukaryotes ; Immune response ; Neurodegeneration ; Peptides ; protein ; Proteins ; Ribonucleic acid ; Ribosomes ; RNA ; RQC ; stress response ; Translation ; translation quality control ; Ubiquitin</subject><ispartof>Chembiochem : a European journal of chemical biology, 2023-10, Vol.24 (20), p.e202300264-n/a</ispartof><rights>2023 The Authors. ChemBioChem published by Wiley-VCH GmbH</rights><rights>2023 The Authors. ChemBioChem published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4134-545a0c2ac64e9f1b1cd460579ff4c6ef84d36d22f26558d936411f05e17674d83</citedby><cites>FETCH-LOGICAL-c4134-545a0c2ac64e9f1b1cd460579ff4c6ef84d36d22f26558d936411f05e17674d83</cites><orcidid>0009-0002-3499-7075 ; 0000-0002-3394-0643 ; 0000-0003-0740-8618 ; 0009-0009-7673-1559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202300264$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202300264$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37382189$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iyer, Kaushik Viswanathan</creatorcontrib><creatorcontrib>Müller, Max</creatorcontrib><creatorcontrib>Tittel, Lena Sophie</creatorcontrib><creatorcontrib>Winz, Marie‐Luise</creatorcontrib><title>Molecular Highway Patrol for Ribosome Collisions</title><title>Chembiochem : a European journal of chemical biology</title><addtitle>Chembiochem</addtitle><description>During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions. The discovery of ribosome collisions as the recognition platform of translation problems caused by various factors represents a cornerstone in the field of translation surveillance. We summarize our current knowledge about the pathways that target collided ribosomes. These pathways do so directly ‐ by removing or recycling ribosomes, peptides, and mRNA ‐ or indirectly ‐ by modulating translation and cellular fate.</description><subject>Cell survival</subject><subject>Cellular stress response</subject><subject>Chemical composition</subject><subject>Chemical damage</subject><subject>Collisions</subject><subject>Eukaryotes</subject><subject>Immune response</subject><subject>Neurodegeneration</subject><subject>Peptides</subject><subject>protein</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>RNA</subject><subject>RQC</subject><subject>stress response</subject><subject>Translation</subject><subject>translation quality control</subject><subject>Ubiquitin</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1LwzAYgIMobk6vHqXgxUtnvpomRy1-DCaK6DmkaaIZ6TKTlbF_b8fmBC-e8gae9-HlAeAcwTGCEF_r2ukxhpj0H0YPwBBRIvKSEXK4mynG5QCcpDSDEApG0DEYkJJwjLgYAvgUvNGdVzF7dB-fK7XOXtQyBp_ZELNXV4cUWpNVwXuXXJinU3BklU_mbPeOwPv93Vv1mE-fHybVzTTXFBGaF7RQUGOlGTXCohrphjJYlMJaqpmxnDaENRhbzIqCN4IwipCFhUElK2nDyQhcbb2LGL46k5aydUkb79XchC5JzAnCglNU9OjlH3QWujjvr-upkiOBiMA9Nd5SOoaUorFyEV2r4loiKDct5aal3LfsFy522q5uTbPHf-L1gNgCK-fN-h-drG4n1a_8GwAifXQ</recordid><startdate>20231017</startdate><enddate>20231017</enddate><creator>Iyer, Kaushik Viswanathan</creator><creator>Müller, Max</creator><creator>Tittel, Lena Sophie</creator><creator>Winz, Marie‐Luise</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0002-3499-7075</orcidid><orcidid>https://orcid.org/0000-0002-3394-0643</orcidid><orcidid>https://orcid.org/0000-0003-0740-8618</orcidid><orcidid>https://orcid.org/0009-0009-7673-1559</orcidid></search><sort><creationdate>20231017</creationdate><title>Molecular Highway Patrol for Ribosome Collisions</title><author>Iyer, Kaushik Viswanathan ; Müller, Max ; Tittel, Lena Sophie ; Winz, Marie‐Luise</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4134-545a0c2ac64e9f1b1cd460579ff4c6ef84d36d22f26558d936411f05e17674d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cell survival</topic><topic>Cellular stress response</topic><topic>Chemical composition</topic><topic>Chemical damage</topic><topic>Collisions</topic><topic>Eukaryotes</topic><topic>Immune response</topic><topic>Neurodegeneration</topic><topic>Peptides</topic><topic>protein</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>RNA</topic><topic>RQC</topic><topic>stress response</topic><topic>Translation</topic><topic>translation quality control</topic><topic>Ubiquitin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Kaushik Viswanathan</creatorcontrib><creatorcontrib>Müller, Max</creatorcontrib><creatorcontrib>Tittel, Lena Sophie</creatorcontrib><creatorcontrib>Winz, Marie‐Luise</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Kaushik Viswanathan</au><au>Müller, Max</au><au>Tittel, Lena Sophie</au><au>Winz, Marie‐Luise</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Highway Patrol for Ribosome Collisions</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><addtitle>Chembiochem</addtitle><date>2023-10-17</date><risdate>2023</risdate><volume>24</volume><issue>20</issue><spage>e202300264</spage><epage>n/a</epage><pages>e202300264-n/a</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>During translation, messenger RNAs (mRNAs) are decoded by ribosomes which can stall for various reasons. These include chemical damage, codon composition, starvation, or translation inhibition. Trailing ribosomes can collide with stalled ribosomes, potentially leading to dysfunctional or toxic proteins. Such aberrant proteins can form aggregates and favor diseases, especially neurodegeneration. To prevent this, both eukaryotes and bacteria have evolved different pathways to remove faulty nascent peptides, mRNAs and defective ribosomes from the collided complex. In eukaryotes, ubiquitin ligases play central roles in triggering downstream responses and several complexes have been characterized that split affected ribosomes and facilitate degradation of the various components. As collided ribosomes signal translation stress to affected cells, in eukaryotes additional stress response pathways are triggered when collisions are sensed. These pathways inhibit translation and modulate cell survival and immune responses. Here, we summarize the current state of knowledge about rescue and stress response pathways triggered by ribosome collisions. The discovery of ribosome collisions as the recognition platform of translation problems caused by various factors represents a cornerstone in the field of translation surveillance. We summarize our current knowledge about the pathways that target collided ribosomes. These pathways do so directly ‐ by removing or recycling ribosomes, peptides, and mRNA ‐ or indirectly ‐ by modulating translation and cellular fate.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37382189</pmid><doi>10.1002/cbic.202300264</doi><tpages>14</tpages><orcidid>https://orcid.org/0009-0002-3499-7075</orcidid><orcidid>https://orcid.org/0000-0002-3394-0643</orcidid><orcidid>https://orcid.org/0000-0003-0740-8618</orcidid><orcidid>https://orcid.org/0009-0009-7673-1559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4227
ispartof Chembiochem : a European journal of chemical biology, 2023-10, Vol.24 (20), p.e202300264-n/a
issn 1439-4227
1439-7633
language eng
recordid cdi_proquest_miscellaneous_2831298415
source Wiley Online Library All Journals
subjects Cell survival
Cellular stress response
Chemical composition
Chemical damage
Collisions
Eukaryotes
Immune response
Neurodegeneration
Peptides
protein
Proteins
Ribonucleic acid
Ribosomes
RNA
RQC
stress response
Translation
translation quality control
Ubiquitin
title Molecular Highway Patrol for Ribosome Collisions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A53%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Highway%20Patrol%20for%20Ribosome%20Collisions&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Iyer,%20Kaushik%20Viswanathan&rft.date=2023-10-17&rft.volume=24&rft.issue=20&rft.spage=e202300264&rft.epage=n/a&rft.pages=e202300264-n/a&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202300264&rft_dat=%3Cproquest_cross%3E2831298415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2878191392&rft_id=info:pmid/37382189&rfr_iscdi=true