Computational modeling of whole-brain dynamics: a review of neurosurgical applications
A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations o...
Gespeichert in:
Veröffentlicht in: | Journal of neurosurgery 2024-01, Vol.140 (1), p.218-230 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 1 |
container_start_page | 218 |
container_title | Journal of neurosurgery |
container_volume | 140 |
creator | Lang, Stefan Momi, Davide Vetkas, Artur Santyr, Brendan Yang, Andrew Z Kalia, Suneil K Griffiths, John D Lozano, Andres |
description | A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology. |
doi_str_mv | 10.3171/2023.5.JNS23250 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2831297811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2831297811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-583e812e9ba1343cf510165455df02b431f31c21d82d4d5d357026d56445b503</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqUws6GMLGltXy4fbKjiUxUMVKyWEzvFKImDnVD135OoLdPd8LzvnR5CrhmdA0vYglMOc5y_vn1w4EhPyJRlACGNMzglU0o5D4GmOCEX3n9TyuIo5udkAgmkHDCeks-lrdu-k52xjayC2ipdmWYT2DLYftlKh7mTpgnUrpG1KfxdIAOnf43ejkSje2d97zamGLKybathGZv8JTkrZeX11WHOyPrxYb18DlfvTy_L-1VY8CzpQkxBp4zrLJcMIihKZMOPGCGqkvI8AlYCKzhTKVeRQgWYUB4rjKMIc6QwI7f72tbZn177TtTGF7qqZKNt7wVPgQ2HUsYGdLFHi-Fl73QpWmdq6XaCUTG6FKNLgeLockjcHMr7vNbqnz_Kgz9V1W6l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831297811</pqid></control><display><type>article</type><title>Computational modeling of whole-brain dynamics: a review of neurosurgical applications</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Lang, Stefan ; Momi, Davide ; Vetkas, Artur ; Santyr, Brendan ; Yang, Andrew Z ; Kalia, Suneil K ; Griffiths, John D ; Lozano, Andres</creator><creatorcontrib>Lang, Stefan ; Momi, Davide ; Vetkas, Artur ; Santyr, Brendan ; Yang, Andrew Z ; Kalia, Suneil K ; Griffiths, John D ; Lozano, Andres</creatorcontrib><description>A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.</description><identifier>ISSN: 0022-3085</identifier><identifier>ISSN: 1933-0693</identifier><identifier>EISSN: 1933-0693</identifier><identifier>DOI: 10.3171/2023.5.JNS23250</identifier><identifier>PMID: 37382356</identifier><language>eng</language><publisher>United States</publisher><subject>Brain - diagnostic imaging ; Brain - pathology ; Brain - surgery ; Computer Simulation ; Connectome - methods ; Epilepsy ; Humans ; Nerve Net ; Neuroimaging</subject><ispartof>Journal of neurosurgery, 2024-01, Vol.140 (1), p.218-230</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-583e812e9ba1343cf510165455df02b431f31c21d82d4d5d357026d56445b503</citedby><cites>FETCH-LOGICAL-c297t-583e812e9ba1343cf510165455df02b431f31c21d82d4d5d357026d56445b503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37382356$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lang, Stefan</creatorcontrib><creatorcontrib>Momi, Davide</creatorcontrib><creatorcontrib>Vetkas, Artur</creatorcontrib><creatorcontrib>Santyr, Brendan</creatorcontrib><creatorcontrib>Yang, Andrew Z</creatorcontrib><creatorcontrib>Kalia, Suneil K</creatorcontrib><creatorcontrib>Griffiths, John D</creatorcontrib><creatorcontrib>Lozano, Andres</creatorcontrib><title>Computational modeling of whole-brain dynamics: a review of neurosurgical applications</title><title>Journal of neurosurgery</title><addtitle>J Neurosurg</addtitle><description>A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.</description><subject>Brain - diagnostic imaging</subject><subject>Brain - pathology</subject><subject>Brain - surgery</subject><subject>Computer Simulation</subject><subject>Connectome - methods</subject><subject>Epilepsy</subject><subject>Humans</subject><subject>Nerve Net</subject><subject>Neuroimaging</subject><issn>0022-3085</issn><issn>1933-0693</issn><issn>1933-0693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kD1PwzAQhi0EoqUws6GMLGltXy4fbKjiUxUMVKyWEzvFKImDnVD135OoLdPd8LzvnR5CrhmdA0vYglMOc5y_vn1w4EhPyJRlACGNMzglU0o5D4GmOCEX3n9TyuIo5udkAgmkHDCeks-lrdu-k52xjayC2ipdmWYT2DLYftlKh7mTpgnUrpG1KfxdIAOnf43ejkSje2d97zamGLKybathGZv8JTkrZeX11WHOyPrxYb18DlfvTy_L-1VY8CzpQkxBp4zrLJcMIihKZMOPGCGqkvI8AlYCKzhTKVeRQgWYUB4rjKMIc6QwI7f72tbZn177TtTGF7qqZKNt7wVPgQ2HUsYGdLFHi-Fl73QpWmdq6XaCUTG6FKNLgeLockjcHMr7vNbqnz_Kgz9V1W6l</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Lang, Stefan</creator><creator>Momi, Davide</creator><creator>Vetkas, Artur</creator><creator>Santyr, Brendan</creator><creator>Yang, Andrew Z</creator><creator>Kalia, Suneil K</creator><creator>Griffiths, John D</creator><creator>Lozano, Andres</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20240101</creationdate><title>Computational modeling of whole-brain dynamics: a review of neurosurgical applications</title><author>Lang, Stefan ; Momi, Davide ; Vetkas, Artur ; Santyr, Brendan ; Yang, Andrew Z ; Kalia, Suneil K ; Griffiths, John D ; Lozano, Andres</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-583e812e9ba1343cf510165455df02b431f31c21d82d4d5d357026d56445b503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Brain - diagnostic imaging</topic><topic>Brain - pathology</topic><topic>Brain - surgery</topic><topic>Computer Simulation</topic><topic>Connectome - methods</topic><topic>Epilepsy</topic><topic>Humans</topic><topic>Nerve Net</topic><topic>Neuroimaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lang, Stefan</creatorcontrib><creatorcontrib>Momi, Davide</creatorcontrib><creatorcontrib>Vetkas, Artur</creatorcontrib><creatorcontrib>Santyr, Brendan</creatorcontrib><creatorcontrib>Yang, Andrew Z</creatorcontrib><creatorcontrib>Kalia, Suneil K</creatorcontrib><creatorcontrib>Griffiths, John D</creatorcontrib><creatorcontrib>Lozano, Andres</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurosurgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lang, Stefan</au><au>Momi, Davide</au><au>Vetkas, Artur</au><au>Santyr, Brendan</au><au>Yang, Andrew Z</au><au>Kalia, Suneil K</au><au>Griffiths, John D</au><au>Lozano, Andres</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of whole-brain dynamics: a review of neurosurgical applications</atitle><jtitle>Journal of neurosurgery</jtitle><addtitle>J Neurosurg</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>140</volume><issue>1</issue><spage>218</spage><epage>230</epage><pages>218-230</pages><issn>0022-3085</issn><issn>1933-0693</issn><eissn>1933-0693</eissn><abstract>A major goal of modern neurosurgery is the personalization of treatment to optimize or predict individual outcomes. One strategy in this regard has been to create whole-brain models of individual patients. Whole-brain modeling is a subfield of computational neuroscience that focuses on simulations of large-scale neural activity patterns across distributed brain networks. Recent advances allow for the personalization of these models by incorporating distinct connectivity architecture obtained from noninvasive neuroimaging of individual patients. Local dynamics of each brain region are simulated with neural mass models and subsequently coupled together, considering the subject's empirical structural connectome. The parameters of the model can be optimized by comparing model-generated and empirical data. The resulting personalized whole-brain models have translational potential in neurosurgery, allowing investigators to simulate the effects of virtual therapies (such as resections or brain stimulations), assess the effect of brain pathology on network dynamics, or discern epileptic networks and predict seizure propagation in silico. The information gained from these simulations can be used as clinical decision support, guiding patient-specific treatment plans. Here the authors provide an overview of the rapidly advancing field of whole-brain modeling and review the literature on neurosurgical applications of this technology.</abstract><cop>United States</cop><pmid>37382356</pmid><doi>10.3171/2023.5.JNS23250</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3085 |
ispartof | Journal of neurosurgery, 2024-01, Vol.140 (1), p.218-230 |
issn | 0022-3085 1933-0693 1933-0693 |
language | eng |
recordid | cdi_proquest_miscellaneous_2831297811 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Brain - diagnostic imaging Brain - pathology Brain - surgery Computer Simulation Connectome - methods Epilepsy Humans Nerve Net Neuroimaging |
title | Computational modeling of whole-brain dynamics: a review of neurosurgical applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T20%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20whole-brain%20dynamics:%20a%20review%20of%20neurosurgical%20applications&rft.jtitle=Journal%20of%20neurosurgery&rft.au=Lang,%20Stefan&rft.date=2024-01-01&rft.volume=140&rft.issue=1&rft.spage=218&rft.epage=230&rft.pages=218-230&rft.issn=0022-3085&rft.eissn=1933-0693&rft_id=info:doi/10.3171/2023.5.JNS23250&rft_dat=%3Cproquest_cross%3E2831297811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831297811&rft_id=info:pmid/37382356&rfr_iscdi=true |