Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries

Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-08, Vol.62 (32), p.e202305466-n/a
Hauptverfasser: Hou, Li‐Peng, Li, Yuan, Li, Zheng, Zhang, Qian‐Kui, Li, Bo‐Quan, Bi, Chen‐Xi, Chen, Zi‐Xian, Su, Li‐Ling, Huang, Jia‐Qi, Wen, Rui, Zhang, Xue‐Qiang, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page e202305466
container_title Angewandte Chemie International Edition
container_volume 62
creator Hou, Li‐Peng
Li, Yuan
Li, Zheng
Zhang, Qian‐Kui
Li, Bo‐Quan
Bi, Chen‐Xi
Chen, Zi‐Xian
Su, Li‐Ling
Huang, Jia‐Qi
Wen, Rui
Zhang, Xue‐Qiang
Zhang, Qiang
description Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stability SEI by enriching organic components in Li−S batteries. The high‐mechanical‐stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic‐rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO‐based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries. An emerging electrolyte design, which can construct high‐mechanical‐stability solid electrolyte interphase (SEI) on lithium metal anodes, is proposed for practical lithium–sulfur batteries. High‐mechanical‐stability SEI effectively restricts its fracture and ongoing reactions of electrolytes on lithium metal anodes, which notably improves the stability of practical lithium–sulfur coin and pouch cells.
doi_str_mv 10.1002/anie.202305466
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2830672040</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830672040</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3736-9bd02615b7140fa45184237da7459ad6050af8d8d6a7232d38472453bdc6f9fb3</originalsourceid><addsrcrecordid>eNqF0U1P2zAYB3ALbRpdtyvHydIuXFL87uRYoNsqdexQOEdObLdGTlLsBNQb34FvuE8yo5YOceFkS_49fz_2A8AJRhOMEDlTrTMTgghFnAlxBEaYE5xRKemHtGeUZjLn-Bh8jvE2-TxH4hM4pjIJLIsRiDNv6j50ftsbeGmiW7XQdgHOm03o7l27gr9NvU631MrDZa8q512_hZ2Fy847DV-Xz9vehM1aRQNdCxeuX7uh-fv4tBy8HQI8V306dyZ-AR-t8tF83a9jcPNjdn3xK1v8-Tm_mC6yOvUnsqLSiAjMK4kZsopxnDNCpVaS8UJpgThSNte5FkoSSjTNmSSM00rXwha2omNwustNT7kbTOzLxsXaeK9a0w2xJDlFQhLEUKLf39Dbbght6i4pxljBCaVJTXaqDl2MwdhyE1yjwrbEqHweR_k8jvIwjlTwbR87VI3RB_7y_wkUO_DgvNm-E1dOr-az_-H_AGm9mAM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2844495233</pqid></control><display><type>article</type><title>Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Hou, Li‐Peng ; Li, Yuan ; Li, Zheng ; Zhang, Qian‐Kui ; Li, Bo‐Quan ; Bi, Chen‐Xi ; Chen, Zi‐Xian ; Su, Li‐Ling ; Huang, Jia‐Qi ; Wen, Rui ; Zhang, Xue‐Qiang ; Zhang, Qiang</creator><creatorcontrib>Hou, Li‐Peng ; Li, Yuan ; Li, Zheng ; Zhang, Qian‐Kui ; Li, Bo‐Quan ; Bi, Chen‐Xi ; Chen, Zi‐Xian ; Su, Li‐Ling ; Huang, Jia‐Qi ; Wen, Rui ; Zhang, Xue‐Qiang ; Zhang, Qiang</creatorcontrib><description>Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stability SEI by enriching organic components in Li−S batteries. The high‐mechanical‐stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic‐rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO‐based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries. An emerging electrolyte design, which can construct high‐mechanical‐stability solid electrolyte interphase (SEI) on lithium metal anodes, is proposed for practical lithium–sulfur batteries. High‐mechanical‐stability SEI effectively restricts its fracture and ongoing reactions of electrolytes on lithium metal anodes, which notably improves the stability of practical lithium–sulfur coin and pouch cells.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202305466</identifier><identifier>PMID: 37377179</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>1,3,5-Trioxane ; Cathodes ; Electrolytes ; Interphase ; Life span ; Lithium ; Lithium sulfur batteries ; Mechanical Stability ; Pouch Cells ; Solid Electrolyte Interphase ; Solid electrolytes ; Specific capacity ; Stability ; Sulfur</subject><ispartof>Angewandte Chemie International Edition, 2023-08, Vol.62 (32), p.e202305466-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3736-9bd02615b7140fa45184237da7459ad6050af8d8d6a7232d38472453bdc6f9fb3</citedby><cites>FETCH-LOGICAL-c3736-9bd02615b7140fa45184237da7459ad6050af8d8d6a7232d38472453bdc6f9fb3</cites><orcidid>0000-0002-9121-6506 ; 0009-0002-4475-1845 ; 0000-0002-9147-525X ; 0009-0004-2968-5071 ; 0000-0003-4382-1899 ; 0000-0002-9544-5795 ; 0000-0003-2856-1881 ; 0000-0002-6652-2456 ; 0000-0003-2644-7452 ; 0000-0001-7394-9186 ; 0000-0002-3929-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202305466$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202305466$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37377179$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hou, Li‐Peng</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Zhang, Qian‐Kui</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Bi, Chen‐Xi</creatorcontrib><creatorcontrib>Chen, Zi‐Xian</creatorcontrib><creatorcontrib>Su, Li‐Ling</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><creatorcontrib>Zhang, Xue‐Qiang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stability SEI by enriching organic components in Li−S batteries. The high‐mechanical‐stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic‐rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO‐based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries. An emerging electrolyte design, which can construct high‐mechanical‐stability solid electrolyte interphase (SEI) on lithium metal anodes, is proposed for practical lithium–sulfur batteries. High‐mechanical‐stability SEI effectively restricts its fracture and ongoing reactions of electrolytes on lithium metal anodes, which notably improves the stability of practical lithium–sulfur coin and pouch cells.</description><subject>1,3,5-Trioxane</subject><subject>Cathodes</subject><subject>Electrolytes</subject><subject>Interphase</subject><subject>Life span</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Mechanical Stability</subject><subject>Pouch Cells</subject><subject>Solid Electrolyte Interphase</subject><subject>Solid electrolytes</subject><subject>Specific capacity</subject><subject>Stability</subject><subject>Sulfur</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P2zAYB3ALbRpdtyvHydIuXFL87uRYoNsqdexQOEdObLdGTlLsBNQb34FvuE8yo5YOceFkS_49fz_2A8AJRhOMEDlTrTMTgghFnAlxBEaYE5xRKemHtGeUZjLn-Bh8jvE2-TxH4hM4pjIJLIsRiDNv6j50ftsbeGmiW7XQdgHOm03o7l27gr9NvU631MrDZa8q512_hZ2Fy847DV-Xz9vehM1aRQNdCxeuX7uh-fv4tBy8HQI8V306dyZ-AR-t8tF83a9jcPNjdn3xK1v8-Tm_mC6yOvUnsqLSiAjMK4kZsopxnDNCpVaS8UJpgThSNte5FkoSSjTNmSSM00rXwha2omNwustNT7kbTOzLxsXaeK9a0w2xJDlFQhLEUKLf39Dbbght6i4pxljBCaVJTXaqDl2MwdhyE1yjwrbEqHweR_k8jvIwjlTwbR87VI3RB_7y_wkUO_DgvNm-E1dOr-az_-H_AGm9mAM</recordid><startdate>20230807</startdate><enddate>20230807</enddate><creator>Hou, Li‐Peng</creator><creator>Li, Yuan</creator><creator>Li, Zheng</creator><creator>Zhang, Qian‐Kui</creator><creator>Li, Bo‐Quan</creator><creator>Bi, Chen‐Xi</creator><creator>Chen, Zi‐Xian</creator><creator>Su, Li‐Ling</creator><creator>Huang, Jia‐Qi</creator><creator>Wen, Rui</creator><creator>Zhang, Xue‐Qiang</creator><creator>Zhang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9121-6506</orcidid><orcidid>https://orcid.org/0009-0002-4475-1845</orcidid><orcidid>https://orcid.org/0000-0002-9147-525X</orcidid><orcidid>https://orcid.org/0009-0004-2968-5071</orcidid><orcidid>https://orcid.org/0000-0003-4382-1899</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0003-2856-1881</orcidid><orcidid>https://orcid.org/0000-0002-6652-2456</orcidid><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></search><sort><creationdate>20230807</creationdate><title>Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries</title><author>Hou, Li‐Peng ; Li, Yuan ; Li, Zheng ; Zhang, Qian‐Kui ; Li, Bo‐Quan ; Bi, Chen‐Xi ; Chen, Zi‐Xian ; Su, Li‐Ling ; Huang, Jia‐Qi ; Wen, Rui ; Zhang, Xue‐Qiang ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3736-9bd02615b7140fa45184237da7459ad6050af8d8d6a7232d38472453bdc6f9fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1,3,5-Trioxane</topic><topic>Cathodes</topic><topic>Electrolytes</topic><topic>Interphase</topic><topic>Life span</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Mechanical Stability</topic><topic>Pouch Cells</topic><topic>Solid Electrolyte Interphase</topic><topic>Solid electrolytes</topic><topic>Specific capacity</topic><topic>Stability</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Li‐Peng</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Zhang, Qian‐Kui</creatorcontrib><creatorcontrib>Li, Bo‐Quan</creatorcontrib><creatorcontrib>Bi, Chen‐Xi</creatorcontrib><creatorcontrib>Chen, Zi‐Xian</creatorcontrib><creatorcontrib>Su, Li‐Ling</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>Wen, Rui</creatorcontrib><creatorcontrib>Zhang, Xue‐Qiang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Li‐Peng</au><au>Li, Yuan</au><au>Li, Zheng</au><au>Zhang, Qian‐Kui</au><au>Li, Bo‐Quan</au><au>Bi, Chen‐Xi</au><au>Chen, Zi‐Xian</au><au>Su, Li‐Ling</au><au>Huang, Jia‐Qi</au><au>Wen, Rui</au><au>Zhang, Xue‐Qiang</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-08-07</date><risdate>2023</risdate><volume>62</volume><issue>32</issue><spage>e202305466</spage><epage>n/a</epage><pages>e202305466-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5‐trioxane (TO) and 1,2‐dimethoxyethane (DME) as co‐solvents is proposed to construct a high‐mechanical‐stability SEI by enriching organic components in Li−S batteries. The high‐mechanical‐stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic‐rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO‐based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries. An emerging electrolyte design, which can construct high‐mechanical‐stability solid electrolyte interphase (SEI) on lithium metal anodes, is proposed for practical lithium–sulfur batteries. High‐mechanical‐stability SEI effectively restricts its fracture and ongoing reactions of electrolytes on lithium metal anodes, which notably improves the stability of practical lithium–sulfur coin and pouch cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37377179</pmid><doi>10.1002/anie.202305466</doi><tpages>8</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-9121-6506</orcidid><orcidid>https://orcid.org/0009-0002-4475-1845</orcidid><orcidid>https://orcid.org/0000-0002-9147-525X</orcidid><orcidid>https://orcid.org/0009-0004-2968-5071</orcidid><orcidid>https://orcid.org/0000-0003-4382-1899</orcidid><orcidid>https://orcid.org/0000-0002-9544-5795</orcidid><orcidid>https://orcid.org/0000-0003-2856-1881</orcidid><orcidid>https://orcid.org/0000-0002-6652-2456</orcidid><orcidid>https://orcid.org/0000-0003-2644-7452</orcidid><orcidid>https://orcid.org/0000-0001-7394-9186</orcidid><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-08, Vol.62 (32), p.e202305466-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2830672040
source Wiley Online Library Journals Frontfile Complete
subjects 1,3,5-Trioxane
Cathodes
Electrolytes
Interphase
Life span
Lithium
Lithium sulfur batteries
Mechanical Stability
Pouch Cells
Solid Electrolyte Interphase
Solid electrolytes
Specific capacity
Stability
Sulfur
title Electrolyte Design for Improving Mechanical Stability of Solid Electrolyte Interphase in Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T16%3A59%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Design%20for%20Improving%20Mechanical%20Stability%20of%20Solid%20Electrolyte%20Interphase%20in%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Hou,%20Li%E2%80%90Peng&rft.date=2023-08-07&rft.volume=62&rft.issue=32&rft.spage=e202305466&rft.epage=n/a&rft.pages=e202305466-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202305466&rft_dat=%3Cproquest_cross%3E2830672040%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2844495233&rft_id=info:pmid/37377179&rfr_iscdi=true