Geometric crystal and tropical R for Dn(1)
We construct a geometric crystal for the affine Lie algebra Dn(1) in the sense of Berenstein and Kazhdan. Based on a matrix realization including a spectral parameter, we prove uniqueness and explicit form of the tropical R, the birational map that intertwines products of the geometric crystals. The...
Gespeichert in:
Veröffentlicht in: | International Mathematics Research Notices 2003, Vol.2003 (48), p.2565-2620 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We construct a geometric crystal for the affine Lie algebra Dn(1) in the sense of Berenstein and Kazhdan. Based on a matrix realization including a spectral parameter, we prove uniqueness and explicit form of the tropical R, the birational map that intertwines products of the geometric crystals. The tropical R commutes with geometric Kashiwara operators and satisfies the Yang-Baxter equation. It is subtraction-free and yields a piecewise linear formula of the combinatorial R for crystals upon ultradiscretization. |
---|---|
ISSN: | 1073-7928 1687-1197 1687-0247 |
DOI: | 10.1155/S1073792803209041 |