Generalized Selection Weighted Vector Filters
This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel fil...
Gespeichert in:
Veröffentlicht in: | EURASIP Journal on Applied Signal Processing 2004-09, Vol.2004 (12), p.347160-1885, Article 347160 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1885 |
---|---|
container_issue | 12 |
container_start_page | 347160 |
container_title | EURASIP Journal on Applied Signal Processing |
container_volume | 2004 |
creator | Lukac, Rastislav Plataniotis, Konstantinos N. Smolka, Bogdan Venetsanopoulos, Anastasios N. |
description | This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy. |
doi_str_mv | 10.1155/S1110865704312126 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28303809</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933669972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-bce33e73900a82d321965c9a8dec6d614b71e92c4b9d432adfe585dcb63d554b3</originalsourceid><addsrcrecordid>eNplkE9LxDAUxIMouK5-AG8FwVs1L69Jk6Ms7ioseFj_HEOavGqXbrsm3YN-eivrQfQ0w_BjGIaxc-BXAFJerwCAayVLXiAIEOqATUDpMleg-eEvf8xOUlpzLpXgYsLyBXUUXdt8UshW1JIfmr7LXqh5fRvG6HkM-pjNm3agmE7ZUe3aRGc_OmVP89vH2V2-fFjcz26WuceiHPLKEyKVaDh3WgQUYJT0xulAXgUFRVUCGeGLyoQChQs1SS2DrxQGKYsKp-xy37uN_fuO0mA3TfLUtq6jfpes0MhRczOCF3_Adb-L3bjNCoOolDGlGCnYUz72KUWq7TY2Gxc_LHD7fZ_9dx9-AWExYKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933669972</pqid></control><display><type>article</type><title>Generalized Selection Weighted Vector Filters</title><source>DOAJ Directory of Open Access Journals</source><source>SpringerLink Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Lukac, Rastislav ; Plataniotis, Konstantinos N. ; Smolka, Bogdan ; Venetsanopoulos, Anastasios N.</creator><creatorcontrib>Lukac, Rastislav ; Plataniotis, Konstantinos N. ; Smolka, Bogdan ; Venetsanopoulos, Anastasios N.</creatorcontrib><description>This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1687-6172</identifier><identifier>ISSN: 1110-8657</identifier><identifier>EISSN: 1687-6180</identifier><identifier>DOI: 10.1155/S1110865704312126</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Color imagery ; Filter design (mathematics) ; Image processing ; Median (statistics) ; Parameter modification ; Signal processing</subject><ispartof>EURASIP Journal on Applied Signal Processing, 2004-09, Vol.2004 (12), p.347160-1885, Article 347160</ispartof><rights>Lukac et al. 2004.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-bce33e73900a82d321965c9a8dec6d614b71e92c4b9d432adfe585dcb63d554b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Lukac, Rastislav</creatorcontrib><creatorcontrib>Plataniotis, Konstantinos N.</creatorcontrib><creatorcontrib>Smolka, Bogdan</creatorcontrib><creatorcontrib>Venetsanopoulos, Anastasios N.</creatorcontrib><title>Generalized Selection Weighted Vector Filters</title><title>EURASIP Journal on Applied Signal Processing</title><description>This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.</description><subject>Color imagery</subject><subject>Filter design (mathematics)</subject><subject>Image processing</subject><subject>Median (statistics)</subject><subject>Parameter modification</subject><subject>Signal processing</subject><issn>1687-6180</issn><issn>1687-6172</issn><issn>1110-8657</issn><issn>1687-6180</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNplkE9LxDAUxIMouK5-AG8FwVs1L69Jk6Ms7ioseFj_HEOavGqXbrsm3YN-eivrQfQ0w_BjGIaxc-BXAFJerwCAayVLXiAIEOqATUDpMleg-eEvf8xOUlpzLpXgYsLyBXUUXdt8UshW1JIfmr7LXqh5fRvG6HkM-pjNm3agmE7ZUe3aRGc_OmVP89vH2V2-fFjcz26WuceiHPLKEyKVaDh3WgQUYJT0xulAXgUFRVUCGeGLyoQChQs1SS2DrxQGKYsKp-xy37uN_fuO0mA3TfLUtq6jfpes0MhRczOCF3_Adb-L3bjNCoOolDGlGCnYUz72KUWq7TY2Gxc_LHD7fZ_9dx9-AWExYKk</recordid><startdate>20040915</startdate><enddate>20040915</enddate><creator>Lukac, Rastislav</creator><creator>Plataniotis, Konstantinos N.</creator><creator>Smolka, Bogdan</creator><creator>Venetsanopoulos, Anastasios N.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20040915</creationdate><title>Generalized Selection Weighted Vector Filters</title><author>Lukac, Rastislav ; Plataniotis, Konstantinos N. ; Smolka, Bogdan ; Venetsanopoulos, Anastasios N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-bce33e73900a82d321965c9a8dec6d614b71e92c4b9d432adfe585dcb63d554b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Color imagery</topic><topic>Filter design (mathematics)</topic><topic>Image processing</topic><topic>Median (statistics)</topic><topic>Parameter modification</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lukac, Rastislav</creatorcontrib><creatorcontrib>Plataniotis, Konstantinos N.</creatorcontrib><creatorcontrib>Smolka, Bogdan</creatorcontrib><creatorcontrib>Venetsanopoulos, Anastasios N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>EURASIP Journal on Applied Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lukac, Rastislav</au><au>Plataniotis, Konstantinos N.</au><au>Smolka, Bogdan</au><au>Venetsanopoulos, Anastasios N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Selection Weighted Vector Filters</atitle><jtitle>EURASIP Journal on Applied Signal Processing</jtitle><date>2004-09-15</date><risdate>2004</risdate><volume>2004</volume><issue>12</issue><spage>347160</spage><epage>1885</epage><pages>347160-1885</pages><artnum>347160</artnum><issn>1687-6180</issn><issn>1687-6172</issn><issn>1110-8657</issn><eissn>1687-6180</eissn><abstract>This paper introduces a class of nonlinear multichannel filters capable of removing impulsive noise in color images. The here-proposed generalized selection weighted vector filter class constitutes a powerful filtering framework for multichannel signal processing. Previously defined multichannel filters such as vector median filter, basic vector directional filter, directional-distance filter, weighted vector median filters, and weighted vector directional filters are treated from a global viewpoint using the proposed framework. Robust order-statistic concepts and increased degree of freedom in filter design make the proposed method attractive for a variety of applications. Introduced multichannel sigmoidal adaptation of the filter parameters and its modifications allow to accommodate the filter parameters to varying signal and noise statistics. Simulation studies reported in this paper indicate that the proposed filter class is computationally attractive, yields excellent performance, and is able to preserve fine details and color information while efficiently suppressing impulsive noise. This paper is an extended version of the paper by Lukac et al. presented at the 2003 IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing (NSIP '03) in Grado, Italy.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1155/S1110865704312126</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-6180 |
ispartof | EURASIP Journal on Applied Signal Processing, 2004-09, Vol.2004 (12), p.347160-1885, Article 347160 |
issn | 1687-6180 1687-6172 1110-8657 1687-6180 |
language | eng |
recordid | cdi_proquest_miscellaneous_28303809 |
source | DOAJ Directory of Open Access Journals; SpringerLink Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Color imagery Filter design (mathematics) Image processing Median (statistics) Parameter modification Signal processing |
title | Generalized Selection Weighted Vector Filters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A32%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Selection%20Weighted%20Vector%20Filters&rft.jtitle=EURASIP%20Journal%20on%20Applied%20Signal%20Processing&rft.au=Lukac,%20Rastislav&rft.date=2004-09-15&rft.volume=2004&rft.issue=12&rft.spage=347160&rft.epage=1885&rft.pages=347160-1885&rft.artnum=347160&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/S1110865704312126&rft_dat=%3Cproquest_cross%3E2933669972%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933669972&rft_id=info:pmid/&rfr_iscdi=true |