Inertia in cognitive processes: the case of the COVID-19 vaccine
Developments in factor analysis (Spearman in Am J Psychol 15:201-292, 1904); Thurstone in Multiple factor analysis, University of Chicago Press, Chicago, 1947), multidimensional scaling (Torgerson in Theory and methods of scaling, Wiley Hoboken, New Jersey, 1958; Young and Householder in Psychometri...
Gespeichert in:
Veröffentlicht in: | Quality & quantity 2024-04, Vol.58 (2), p.1147-1161 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1161 |
---|---|
container_issue | 2 |
container_start_page | 1147 |
container_title | Quality & quantity |
container_volume | 58 |
creator | Woelfel, Joseph Fink, Edward L. Cai, Deborah A. Anderson, Kenton Iacobucci, Asa Wang, Hua |
description | Developments in factor analysis (Spearman in Am J Psychol 15:201-292, 1904); Thurstone in Multiple factor analysis, University of Chicago Press, Chicago, 1947), multidimensional scaling (Torgerson in Theory and methods of scaling, Wiley Hoboken, New Jersey, 1958; Young and Householder in Psychometrika, 3:19–22, 1938), the Galileo model (Woelfel and Fink in The measurement of communication processes: galileo theory and method, Academic Press Cambridge, Massachusetts, 1980), and, more recently, in computer science, artificial intelligence, computational linguistics, network analysis and other disciplines (Woelfel in Qual Quant 54:263–278, 2020) have shown that human cognitive and cultural beliefs and attitudes can be modeled as movement through a high-dimensional non-Euclidean space. This article demonstrates the theoretical and methodological contribution that multidimensional scaling makes to understand attitude change associated with the COVID-19 vaccine. |
doi_str_mv | 10.1007/s11135-023-01684-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2830219504</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2830219504</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285x-8015dc5d2e2b39730e44acdfbca942f823e0fba43053fae5798767570a91466c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsDONXHLMClVelSt0AW8txJyVVm5Q4qcrfE5oCEgtWHsnn3hkdQk4ZXDIAfRUYY0JR4IICixNJN3ukz5QWVCdS7ZM-gBBUMa175CiEOUAbk_qQ9IQWyphY9cnNqMCqzl2UF5EvZ0Ve52uMVlXpMQQM11H9hpF3AaMy287DyevojjITrZ33eYHH5CBzi4Anu3dAXh7un4dPdDx5HA1vx9TzRG1oAkxNvZpy5KkwWgBK6fw0S70zkmcJFwhZ6qQAJTKHSptEx1ppcIbJOPZiQC663va29wZDbZd58LhYuALLJlieCODMKJAtev4HnZdNVbTXWW5UrKSWW4p3lK_KECrM7KrKl676sAzsl1_b-bWtX7v1azdt6GxX3aRLnP5EvoW2gOiA0H4VM6x-d_9T-wknZ4M3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2956547404</pqid></control><display><type>article</type><title>Inertia in cognitive processes: the case of the COVID-19 vaccine</title><source>Sociological Abstracts</source><source>SpringerLink Journals - AutoHoldings</source><creator>Woelfel, Joseph ; Fink, Edward L. ; Cai, Deborah A. ; Anderson, Kenton ; Iacobucci, Asa ; Wang, Hua</creator><creatorcontrib>Woelfel, Joseph ; Fink, Edward L. ; Cai, Deborah A. ; Anderson, Kenton ; Iacobucci, Asa ; Wang, Hua</creatorcontrib><description>Developments in factor analysis (Spearman in Am J Psychol 15:201-292, 1904); Thurstone in Multiple factor analysis, University of Chicago Press, Chicago, 1947), multidimensional scaling (Torgerson in Theory and methods of scaling, Wiley Hoboken, New Jersey, 1958; Young and Householder in Psychometrika, 3:19–22, 1938), the Galileo model (Woelfel and Fink in The measurement of communication processes: galileo theory and method, Academic Press Cambridge, Massachusetts, 1980), and, more recently, in computer science, artificial intelligence, computational linguistics, network analysis and other disciplines (Woelfel in Qual Quant 54:263–278, 2020) have shown that human cognitive and cultural beliefs and attitudes can be modeled as movement through a high-dimensional non-Euclidean space. This article demonstrates the theoretical and methodological contribution that multidimensional scaling makes to understand attitude change associated with the COVID-19 vaccine.</description><identifier>ISSN: 0033-5177</identifier><identifier>EISSN: 1573-7845</identifier><identifier>DOI: 10.1007/s11135-023-01684-x</identifier><identifier>PMID: 37359965</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial intelligence ; Attitude change ; Attitudes ; Cognition ; Cognition & reasoning ; Communication ; Computer science ; COVID-19 ; COVID-19 vaccines ; Credibility ; Cultural values ; Experiments ; Factor analysis ; Hogs ; Immunization ; Measurement ; Methodology of the Social Sciences ; Network analysis ; Neural networks ; Nurses ; Questionnaires ; Social Sciences</subject><ispartof>Quality & quantity, 2024-04, Vol.58 (2), p.1147-1161</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c285x-8015dc5d2e2b39730e44acdfbca942f823e0fba43053fae5798767570a91466c3</cites><orcidid>0000-0003-1911-131X ; 0000-0001-6387-5574 ; 0000-0002-7089-4260 ; 0000-0002-7759-2628 ; 0000-0002-5994-5733 ; 0000-0001-8428-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11135-023-01684-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11135-023-01684-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,33751,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37359965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woelfel, Joseph</creatorcontrib><creatorcontrib>Fink, Edward L.</creatorcontrib><creatorcontrib>Cai, Deborah A.</creatorcontrib><creatorcontrib>Anderson, Kenton</creatorcontrib><creatorcontrib>Iacobucci, Asa</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><title>Inertia in cognitive processes: the case of the COVID-19 vaccine</title><title>Quality & quantity</title><addtitle>Qual Quant</addtitle><addtitle>Qual Quant</addtitle><description>Developments in factor analysis (Spearman in Am J Psychol 15:201-292, 1904); Thurstone in Multiple factor analysis, University of Chicago Press, Chicago, 1947), multidimensional scaling (Torgerson in Theory and methods of scaling, Wiley Hoboken, New Jersey, 1958; Young and Householder in Psychometrika, 3:19–22, 1938), the Galileo model (Woelfel and Fink in The measurement of communication processes: galileo theory and method, Academic Press Cambridge, Massachusetts, 1980), and, more recently, in computer science, artificial intelligence, computational linguistics, network analysis and other disciplines (Woelfel in Qual Quant 54:263–278, 2020) have shown that human cognitive and cultural beliefs and attitudes can be modeled as movement through a high-dimensional non-Euclidean space. This article demonstrates the theoretical and methodological contribution that multidimensional scaling makes to understand attitude change associated with the COVID-19 vaccine.</description><subject>Artificial intelligence</subject><subject>Attitude change</subject><subject>Attitudes</subject><subject>Cognition</subject><subject>Cognition & reasoning</subject><subject>Communication</subject><subject>Computer science</subject><subject>COVID-19</subject><subject>COVID-19 vaccines</subject><subject>Credibility</subject><subject>Cultural values</subject><subject>Experiments</subject><subject>Factor analysis</subject><subject>Hogs</subject><subject>Immunization</subject><subject>Measurement</subject><subject>Methodology of the Social Sciences</subject><subject>Network analysis</subject><subject>Neural networks</subject><subject>Nurses</subject><subject>Questionnaires</subject><subject>Social Sciences</subject><issn>0033-5177</issn><issn>1573-7845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BHHNA</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwAyxQJDZsDONXHLMClVelSt0AW8txJyVVm5Q4qcrfE5oCEgtWHsnn3hkdQk4ZXDIAfRUYY0JR4IICixNJN3ukz5QWVCdS7ZM-gBBUMa175CiEOUAbk_qQ9IQWyphY9cnNqMCqzl2UF5EvZ0Ve52uMVlXpMQQM11H9hpF3AaMy287DyevojjITrZ33eYHH5CBzi4Anu3dAXh7un4dPdDx5HA1vx9TzRG1oAkxNvZpy5KkwWgBK6fw0S70zkmcJFwhZ6qQAJTKHSptEx1ppcIbJOPZiQC663va29wZDbZd58LhYuALLJlieCODMKJAtev4HnZdNVbTXWW5UrKSWW4p3lK_KECrM7KrKl676sAzsl1_b-bWtX7v1azdt6GxX3aRLnP5EvoW2gOiA0H4VM6x-d_9T-wknZ4M3</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Woelfel, Joseph</creator><creator>Fink, Edward L.</creator><creator>Cai, Deborah A.</creator><creator>Anderson, Kenton</creator><creator>Iacobucci, Asa</creator><creator>Wang, Hua</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U4</scope><scope>8BJ</scope><scope>BHHNA</scope><scope>DWI</scope><scope>FQK</scope><scope>JBE</scope><scope>WZK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1911-131X</orcidid><orcidid>https://orcid.org/0000-0001-6387-5574</orcidid><orcidid>https://orcid.org/0000-0002-7089-4260</orcidid><orcidid>https://orcid.org/0000-0002-7759-2628</orcidid><orcidid>https://orcid.org/0000-0002-5994-5733</orcidid><orcidid>https://orcid.org/0000-0001-8428-8360</orcidid></search><sort><creationdate>20240401</creationdate><title>Inertia in cognitive processes: the case of the COVID-19 vaccine</title><author>Woelfel, Joseph ; Fink, Edward L. ; Cai, Deborah A. ; Anderson, Kenton ; Iacobucci, Asa ; Wang, Hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285x-8015dc5d2e2b39730e44acdfbca942f823e0fba43053fae5798767570a91466c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Attitude change</topic><topic>Attitudes</topic><topic>Cognition</topic><topic>Cognition & reasoning</topic><topic>Communication</topic><topic>Computer science</topic><topic>COVID-19</topic><topic>COVID-19 vaccines</topic><topic>Credibility</topic><topic>Cultural values</topic><topic>Experiments</topic><topic>Factor analysis</topic><topic>Hogs</topic><topic>Immunization</topic><topic>Measurement</topic><topic>Methodology of the Social Sciences</topic><topic>Network analysis</topic><topic>Neural networks</topic><topic>Nurses</topic><topic>Questionnaires</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woelfel, Joseph</creatorcontrib><creatorcontrib>Fink, Edward L.</creatorcontrib><creatorcontrib>Cai, Deborah A.</creatorcontrib><creatorcontrib>Anderson, Kenton</creatorcontrib><creatorcontrib>Iacobucci, Asa</creatorcontrib><creatorcontrib>Wang, Hua</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Sociological Abstracts (pre-2017)</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Sociological Abstracts</collection><collection>Sociological Abstracts</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>Sociological Abstracts (Ovid)</collection><collection>MEDLINE - Academic</collection><jtitle>Quality & quantity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woelfel, Joseph</au><au>Fink, Edward L.</au><au>Cai, Deborah A.</au><au>Anderson, Kenton</au><au>Iacobucci, Asa</au><au>Wang, Hua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inertia in cognitive processes: the case of the COVID-19 vaccine</atitle><jtitle>Quality & quantity</jtitle><stitle>Qual Quant</stitle><addtitle>Qual Quant</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>58</volume><issue>2</issue><spage>1147</spage><epage>1161</epage><pages>1147-1161</pages><issn>0033-5177</issn><eissn>1573-7845</eissn><abstract>Developments in factor analysis (Spearman in Am J Psychol 15:201-292, 1904); Thurstone in Multiple factor analysis, University of Chicago Press, Chicago, 1947), multidimensional scaling (Torgerson in Theory and methods of scaling, Wiley Hoboken, New Jersey, 1958; Young and Householder in Psychometrika, 3:19–22, 1938), the Galileo model (Woelfel and Fink in The measurement of communication processes: galileo theory and method, Academic Press Cambridge, Massachusetts, 1980), and, more recently, in computer science, artificial intelligence, computational linguistics, network analysis and other disciplines (Woelfel in Qual Quant 54:263–278, 2020) have shown that human cognitive and cultural beliefs and attitudes can be modeled as movement through a high-dimensional non-Euclidean space. This article demonstrates the theoretical and methodological contribution that multidimensional scaling makes to understand attitude change associated with the COVID-19 vaccine.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>37359965</pmid><doi>10.1007/s11135-023-01684-x</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1911-131X</orcidid><orcidid>https://orcid.org/0000-0001-6387-5574</orcidid><orcidid>https://orcid.org/0000-0002-7089-4260</orcidid><orcidid>https://orcid.org/0000-0002-7759-2628</orcidid><orcidid>https://orcid.org/0000-0002-5994-5733</orcidid><orcidid>https://orcid.org/0000-0001-8428-8360</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5177 |
ispartof | Quality & quantity, 2024-04, Vol.58 (2), p.1147-1161 |
issn | 0033-5177 1573-7845 |
language | eng |
recordid | cdi_proquest_miscellaneous_2830219504 |
source | Sociological Abstracts; SpringerLink Journals - AutoHoldings |
subjects | Artificial intelligence Attitude change Attitudes Cognition Cognition & reasoning Communication Computer science COVID-19 COVID-19 vaccines Credibility Cultural values Experiments Factor analysis Hogs Immunization Measurement Methodology of the Social Sciences Network analysis Neural networks Nurses Questionnaires Social Sciences |
title | Inertia in cognitive processes: the case of the COVID-19 vaccine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inertia%20in%20cognitive%20processes:%20the%20case%20of%20the%20COVID-19%20vaccine&rft.jtitle=Quality%20&%20quantity&rft.au=Woelfel,%20Joseph&rft.date=2024-04-01&rft.volume=58&rft.issue=2&rft.spage=1147&rft.epage=1161&rft.pages=1147-1161&rft.issn=0033-5177&rft.eissn=1573-7845&rft_id=info:doi/10.1007/s11135-023-01684-x&rft_dat=%3Cproquest_cross%3E2830219504%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2956547404&rft_id=info:pmid/37359965&rfr_iscdi=true |