Geometric approach to higher weights

The notion of higher (or generalized) weights of codes is just as natural as that of the classical Hamming weight. The authors adopt the geometric point of view and always treat the q-ary case. Some results and proofs being new, the main goal is to present a clear picture of what is known on the sub...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 1995-11, Vol.41 (6), p.1564-1588
Hauptverfasser: Tsfasman, M.A., Vladut, S.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1588
container_issue 6
container_start_page 1564
container_title IEEE transactions on information theory
container_volume 41
creator Tsfasman, M.A.
Vladut, S.G.
description The notion of higher (or generalized) weights of codes is just as natural as that of the classical Hamming weight. The authors adopt the geometric point of view and always treat the q-ary case. Some results and proofs being new, the main goal is to present a clear picture of what is known on the subject.
doi_str_mv 10.1109/18.476213
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28300782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>476213</ieee_id><sourcerecordid>28300782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-345c0ec58cbbeffddcb2034c78221cd65acd8fd93773fddb15764c443318ef863</originalsourceid><addsrcrecordid>eNpdkM1Lw0AUxBdRsFYPXj0FEcFD6r79yO4epWgVCl70vCQvLzalbepugvjfu5LiwdMwzI9hGMYugc8AuLsHO1OmECCP2AS0NrkrtDpmE87B5k4pe8rOYlwnqzSICbtZULelPrSYlft96EpcZX2XrdqPFYXsi5L28ZydNOUm0sVBp-z96fFt_pwvXxcv84dljpKrPpdKIyfUFquKmqausRJcKjRWCMC60CXWtqmdNEamtAJtCoVKSQmWGlvIKbsde9OQz4Fi77dtRNpsyh11Q_TCSs5TWwKv_4Hrbgi7tM2D045zYVyC7kYIQxdjoMbvQ7stw7cH7n_P8mD9eFZir0a2JaI_7hD-AOtYYqU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195900279</pqid></control><display><type>article</type><title>Geometric approach to higher weights</title><source>IEEE Electronic Library (IEL)</source><creator>Tsfasman, M.A. ; Vladut, S.G.</creator><creatorcontrib>Tsfasman, M.A. ; Vladut, S.G.</creatorcontrib><description>The notion of higher (or generalized) weights of codes is just as natural as that of the classical Hamming weight. The authors adopt the geometric point of view and always treat the q-ary case. Some results and proofs being new, the main goal is to present a clear picture of what is known on the subject.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/18.476213</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algebra ; Block codes ; Codes ; Cryptography ; Galois fields ; Geometry ; Hamming weight ; Linear code ; Vectors</subject><ispartof>IEEE transactions on information theory, 1995-11, Vol.41 (6), p.1564-1588</ispartof><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 1995</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-345c0ec58cbbeffddcb2034c78221cd65acd8fd93773fddb15764c443318ef863</citedby><cites>FETCH-LOGICAL-c304t-345c0ec58cbbeffddcb2034c78221cd65acd8fd93773fddb15764c443318ef863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/476213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/476213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Tsfasman, M.A.</creatorcontrib><creatorcontrib>Vladut, S.G.</creatorcontrib><title>Geometric approach to higher weights</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>The notion of higher (or generalized) weights of codes is just as natural as that of the classical Hamming weight. The authors adopt the geometric point of view and always treat the q-ary case. Some results and proofs being new, the main goal is to present a clear picture of what is known on the subject.</description><subject>Algebra</subject><subject>Block codes</subject><subject>Codes</subject><subject>Cryptography</subject><subject>Galois fields</subject><subject>Geometry</subject><subject>Hamming weight</subject><subject>Linear code</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpdkM1Lw0AUxBdRsFYPXj0FEcFD6r79yO4epWgVCl70vCQvLzalbepugvjfu5LiwdMwzI9hGMYugc8AuLsHO1OmECCP2AS0NrkrtDpmE87B5k4pe8rOYlwnqzSICbtZULelPrSYlft96EpcZX2XrdqPFYXsi5L28ZydNOUm0sVBp-z96fFt_pwvXxcv84dljpKrPpdKIyfUFquKmqausRJcKjRWCMC60CXWtqmdNEamtAJtCoVKSQmWGlvIKbsde9OQz4Fi77dtRNpsyh11Q_TCSs5TWwKv_4Hrbgi7tM2D045zYVyC7kYIQxdjoMbvQ7stw7cH7n_P8mD9eFZir0a2JaI_7hD-AOtYYqU</recordid><startdate>19951101</startdate><enddate>19951101</enddate><creator>Tsfasman, M.A.</creator><creator>Vladut, S.G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19951101</creationdate><title>Geometric approach to higher weights</title><author>Tsfasman, M.A. ; Vladut, S.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-345c0ec58cbbeffddcb2034c78221cd65acd8fd93773fddb15764c443318ef863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>Algebra</topic><topic>Block codes</topic><topic>Codes</topic><topic>Cryptography</topic><topic>Galois fields</topic><topic>Geometry</topic><topic>Hamming weight</topic><topic>Linear code</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsfasman, M.A.</creatorcontrib><creatorcontrib>Vladut, S.G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tsfasman, M.A.</au><au>Vladut, S.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric approach to higher weights</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>1995-11-01</date><risdate>1995</risdate><volume>41</volume><issue>6</issue><spage>1564</spage><epage>1588</epage><pages>1564-1588</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>The notion of higher (or generalized) weights of codes is just as natural as that of the classical Hamming weight. The authors adopt the geometric point of view and always treat the q-ary case. Some results and proofs being new, the main goal is to present a clear picture of what is known on the subject.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/18.476213</doi><tpages>25</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 1995-11, Vol.41 (6), p.1564-1588
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_miscellaneous_28300782
source IEEE Electronic Library (IEL)
subjects Algebra
Block codes
Codes
Cryptography
Galois fields
Geometry
Hamming weight
Linear code
Vectors
title Geometric approach to higher weights
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20approach%20to%20higher%20weights&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Tsfasman,%20M.A.&rft.date=1995-11-01&rft.volume=41&rft.issue=6&rft.spage=1564&rft.epage=1588&rft.pages=1564-1588&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/18.476213&rft_dat=%3Cproquest_RIE%3E28300782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195900279&rft_id=info:pmid/&rft_ieee_id=476213&rfr_iscdi=true