Noise filtering and deconvolution of XPS data by wavelets and Fourier transform

In experimental sciences, the recorded data are often modelled as the noisy convolution product of an instrumental response with the ‘true’ signal to find. Different models have been used for interpreting x‐ray photoelectron spectroscopy (XPS) spectra. This article suggests a method of estimate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2004-01, Vol.36 (1), p.71-80
Hauptverfasser: Charles, Catherine, Leclerc, Gervais, Louette, Pierre, Rasson, Jean-Paul, Pireaux, Jean-Jacques
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 80
container_issue 1
container_start_page 71
container_title Surface and interface analysis
container_volume 36
creator Charles, Catherine
Leclerc, Gervais
Louette, Pierre
Rasson, Jean-Paul
Pireaux, Jean-Jacques
description In experimental sciences, the recorded data are often modelled as the noisy convolution product of an instrumental response with the ‘true’ signal to find. Different models have been used for interpreting x‐ray photoelectron spectroscopy (XPS) spectra. This article suggests a method of estimate the ‘true’ XPS signal that relies upon the use of wavelets, which, because they exhibit simultaneous time and frequency localization, are well suited to signal analysis. First, a wavelet shrinkage algorithm is used to filter the noise. This is achieved by decomposing the noisy signal into an appropriate wavelet basis and then thresholding the wavelet coefficients that contain noise. This algorithm has a particular threshold related to frequency and time. Secondly, the broadening due to the instrumental response is eliminated through a deconvolution process similar to that developed in the previous paper in this series for the analysis of HREELS data. This step mainly rests on least‐squares and on the existing relation between the Fourier transform, the wavelet transform and the convolution product. Copyright © 2004 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/sia.1650
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28297718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28297718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3620-d580d3bfbc1fb5dbb4d05e7fef1780e89052b66f4a4d509a8d23bc3306472c993</originalsourceid><addsrcrecordid>eNp10EtLAzEUhuEgCtYL-BOyUdyMniQzmcxSxFZBqqCidBMyuUh0OtFk2tp_79QWXbk6m4cXzofQEYEzAkDPk1dnhBewhQYEKp5VFRHbaAAkpxnNKdlFeym9AYBggg_Q3Tj4ZLHzTWejb1-xag02Vod2HppZ50OLg8Mv9w_YqE7heokXam4b26UfOQyz6G3EXVRtciFOD9COU02yh5u7j56GV4-X19nt3ejm8uI204xTyEwhwLDa1Zq4ujB1nRsobOmsI6UAKyooaM25y1VuCqiUMJTVmjHgeUl1VbF9dLLufsTwObOpk1OftG0a1dowS5IKWpUlET08XUMdQ0rROvkR_VTFpSQgV4vJfjG5Wqynx5umSlo1rv9J-_TnC8FpLljvsrVb-MYu_-3Jh5uLTXfjfers169X8V3ykpWFfB6PJH0c5ZNyMpacfQNeZYi4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28297718</pqid></control><display><type>article</type><title>Noise filtering and deconvolution of XPS data by wavelets and Fourier transform</title><source>Wiley Online Library All Journals</source><creator>Charles, Catherine ; Leclerc, Gervais ; Louette, Pierre ; Rasson, Jean-Paul ; Pireaux, Jean-Jacques</creator><creatorcontrib>Charles, Catherine ; Leclerc, Gervais ; Louette, Pierre ; Rasson, Jean-Paul ; Pireaux, Jean-Jacques</creatorcontrib><description>In experimental sciences, the recorded data are often modelled as the noisy convolution product of an instrumental response with the ‘true’ signal to find. Different models have been used for interpreting x‐ray photoelectron spectroscopy (XPS) spectra. This article suggests a method of estimate the ‘true’ XPS signal that relies upon the use of wavelets, which, because they exhibit simultaneous time and frequency localization, are well suited to signal analysis. First, a wavelet shrinkage algorithm is used to filter the noise. This is achieved by decomposing the noisy signal into an appropriate wavelet basis and then thresholding the wavelet coefficients that contain noise. This algorithm has a particular threshold related to frequency and time. Secondly, the broadening due to the instrumental response is eliminated through a deconvolution process similar to that developed in the previous paper in this series for the analysis of HREELS data. This step mainly rests on least‐squares and on the existing relation between the Fourier transform, the wavelet transform and the convolution product. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0142-2421</identifier><identifier>EISSN: 1096-9918</identifier><identifier>DOI: 10.1002/sia.1650</identifier><identifier>CODEN: SIANDQ</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; deconvolution ; Exact sciences and technology ; Physics ; Poisson noise ; wavelets ; XPS</subject><ispartof>Surface and interface analysis, 2004-01, Vol.36 (1), p.71-80</ispartof><rights>Copyright © 2004 John Wiley &amp; Sons, Ltd.</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3620-d580d3bfbc1fb5dbb4d05e7fef1780e89052b66f4a4d509a8d23bc3306472c993</citedby><cites>FETCH-LOGICAL-c3620-d580d3bfbc1fb5dbb4d05e7fef1780e89052b66f4a4d509a8d23bc3306472c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsia.1650$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsia.1650$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15862483$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Charles, Catherine</creatorcontrib><creatorcontrib>Leclerc, Gervais</creatorcontrib><creatorcontrib>Louette, Pierre</creatorcontrib><creatorcontrib>Rasson, Jean-Paul</creatorcontrib><creatorcontrib>Pireaux, Jean-Jacques</creatorcontrib><title>Noise filtering and deconvolution of XPS data by wavelets and Fourier transform</title><title>Surface and interface analysis</title><addtitle>Surf. Interface Anal</addtitle><description>In experimental sciences, the recorded data are often modelled as the noisy convolution product of an instrumental response with the ‘true’ signal to find. Different models have been used for interpreting x‐ray photoelectron spectroscopy (XPS) spectra. This article suggests a method of estimate the ‘true’ XPS signal that relies upon the use of wavelets, which, because they exhibit simultaneous time and frequency localization, are well suited to signal analysis. First, a wavelet shrinkage algorithm is used to filter the noise. This is achieved by decomposing the noisy signal into an appropriate wavelet basis and then thresholding the wavelet coefficients that contain noise. This algorithm has a particular threshold related to frequency and time. Secondly, the broadening due to the instrumental response is eliminated through a deconvolution process similar to that developed in the previous paper in this series for the analysis of HREELS data. This step mainly rests on least‐squares and on the existing relation between the Fourier transform, the wavelet transform and the convolution product. Copyright © 2004 John Wiley &amp; Sons, Ltd.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>deconvolution</subject><subject>Exact sciences and technology</subject><subject>Physics</subject><subject>Poisson noise</subject><subject>wavelets</subject><subject>XPS</subject><issn>0142-2421</issn><issn>1096-9918</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10EtLAzEUhuEgCtYL-BOyUdyMniQzmcxSxFZBqqCidBMyuUh0OtFk2tp_79QWXbk6m4cXzofQEYEzAkDPk1dnhBewhQYEKp5VFRHbaAAkpxnNKdlFeym9AYBggg_Q3Tj4ZLHzTWejb1-xag02Vod2HppZ50OLg8Mv9w_YqE7heokXam4b26UfOQyz6G3EXVRtciFOD9COU02yh5u7j56GV4-X19nt3ejm8uI204xTyEwhwLDa1Zq4ujB1nRsobOmsI6UAKyooaM25y1VuCqiUMJTVmjHgeUl1VbF9dLLufsTwObOpk1OftG0a1dowS5IKWpUlET08XUMdQ0rROvkR_VTFpSQgV4vJfjG5Wqynx5umSlo1rv9J-_TnC8FpLljvsrVb-MYu_-3Jh5uLTXfjfers169X8V3ykpWFfB6PJH0c5ZNyMpacfQNeZYi4</recordid><startdate>200401</startdate><enddate>200401</enddate><creator>Charles, Catherine</creator><creator>Leclerc, Gervais</creator><creator>Louette, Pierre</creator><creator>Rasson, Jean-Paul</creator><creator>Pireaux, Jean-Jacques</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>200401</creationdate><title>Noise filtering and deconvolution of XPS data by wavelets and Fourier transform</title><author>Charles, Catherine ; Leclerc, Gervais ; Louette, Pierre ; Rasson, Jean-Paul ; Pireaux, Jean-Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3620-d580d3bfbc1fb5dbb4d05e7fef1780e89052b66f4a4d509a8d23bc3306472c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>deconvolution</topic><topic>Exact sciences and technology</topic><topic>Physics</topic><topic>Poisson noise</topic><topic>wavelets</topic><topic>XPS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Charles, Catherine</creatorcontrib><creatorcontrib>Leclerc, Gervais</creatorcontrib><creatorcontrib>Louette, Pierre</creatorcontrib><creatorcontrib>Rasson, Jean-Paul</creatorcontrib><creatorcontrib>Pireaux, Jean-Jacques</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface and interface analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Charles, Catherine</au><au>Leclerc, Gervais</au><au>Louette, Pierre</au><au>Rasson, Jean-Paul</au><au>Pireaux, Jean-Jacques</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noise filtering and deconvolution of XPS data by wavelets and Fourier transform</atitle><jtitle>Surface and interface analysis</jtitle><addtitle>Surf. Interface Anal</addtitle><date>2004-01</date><risdate>2004</risdate><volume>36</volume><issue>1</issue><spage>71</spage><epage>80</epage><pages>71-80</pages><issn>0142-2421</issn><eissn>1096-9918</eissn><coden>SIANDQ</coden><abstract>In experimental sciences, the recorded data are often modelled as the noisy convolution product of an instrumental response with the ‘true’ signal to find. Different models have been used for interpreting x‐ray photoelectron spectroscopy (XPS) spectra. This article suggests a method of estimate the ‘true’ XPS signal that relies upon the use of wavelets, which, because they exhibit simultaneous time and frequency localization, are well suited to signal analysis. First, a wavelet shrinkage algorithm is used to filter the noise. This is achieved by decomposing the noisy signal into an appropriate wavelet basis and then thresholding the wavelet coefficients that contain noise. This algorithm has a particular threshold related to frequency and time. Secondly, the broadening due to the instrumental response is eliminated through a deconvolution process similar to that developed in the previous paper in this series for the analysis of HREELS data. This step mainly rests on least‐squares and on the existing relation between the Fourier transform, the wavelet transform and the convolution product. Copyright © 2004 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/sia.1650</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-2421
ispartof Surface and interface analysis, 2004-01, Vol.36 (1), p.71-80
issn 0142-2421
1096-9918
language eng
recordid cdi_proquest_miscellaneous_28297718
source Wiley Online Library All Journals
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
deconvolution
Exact sciences and technology
Physics
Poisson noise
wavelets
XPS
title Noise filtering and deconvolution of XPS data by wavelets and Fourier transform
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T19%3A11%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noise%20filtering%20and%20deconvolution%20of%20XPS%20data%20by%20wavelets%20and%20Fourier%20transform&rft.jtitle=Surface%20and%20interface%20analysis&rft.au=Charles,%20Catherine&rft.date=2004-01&rft.volume=36&rft.issue=1&rft.spage=71&rft.epage=80&rft.pages=71-80&rft.issn=0142-2421&rft.eissn=1096-9918&rft.coden=SIANDQ&rft_id=info:doi/10.1002/sia.1650&rft_dat=%3Cproquest_cross%3E28297718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28297718&rft_id=info:pmid/&rfr_iscdi=true