Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study

Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like -alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain lengt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2023-07, Vol.19 (26), p.5001-5015
Hauptverfasser: Nguyen, Michael H L, Dziura, Dominik, DiPasquale, Mitchell, Castillo, Stuart R, Kelley, Elizabeth G, Marquardt, Drew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5015
container_issue 26
container_start_page 5001
container_title Soft matter
container_volume 19
creator Nguyen, Michael H L
Dziura, Dominik
DiPasquale, Mitchell
Castillo, Stuart R
Kelley, Elizabeth G
Marquardt, Drew
description Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like -alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of -alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.
doi_str_mv 10.1039/d2sm01583h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829705621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2833013317</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-580b1bcaa53a7256db48cf68bba4be8290afda5bcf5c61e10d5f24932255c03b3</originalsourceid><addsrcrecordid>eNpd0LtOwzAUBmALgWgpLDwAssSCkAK-Ji4bKpciFTFwEVtkO3bjKolL7FTq2xNo6cB0zvDp1zk_AKcYXWFEx9cFCTXCXNByDwxxxliSCib2dzv9HICjEBYIUcFweggGNKM845wNwcdTszIhurmMrpnDWBqou5h4a6Gx1ugIvYUNTGSlfemrAH0DK7d0Baz9ytSmiTdQQuX8slwHp2UFQ-yK9TE4sLIK5mQ7R-D94f5tMk1mL49Pk9tZohnOYsIFUlhpKTmVGeFpoZjQNhVKSaaMIGMkbSG50pbrFBuMCm4JG1NCONeIKjoCF5vcZeu_uv6RvHZBm6qSjfFdyEmfkSGeEtzT83904bu26a_rFaUIU4qzXl1ulG59CK2x-bJ1tWzXOUb5T9v5HXl9_m172uOzbWSnalPs6F-99BvJ7noI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2833013317</pqid></control><display><type>article</type><title>Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Nguyen, Michael H L ; Dziura, Dominik ; DiPasquale, Mitchell ; Castillo, Stuart R ; Kelley, Elizabeth G ; Marquardt, Drew</creator><creatorcontrib>Nguyen, Michael H L ; Dziura, Dominik ; DiPasquale, Mitchell ; Castillo, Stuart R ; Kelley, Elizabeth G ; Marquardt, Drew</creatorcontrib><description>Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like -alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of -alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/d2sm01583h</identifier><identifier>PMID: 37357554</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>1-Hexanol ; Alcohol ; Alcohols ; Calcein ; Cell membranes ; Fluidity ; Hexanol ; Leakage ; Lipids ; Molecular dynamics ; Neutron scattering ; Neutrons ; Rigidity ; Small angle X ray scattering ; Tapering ; X-ray scattering</subject><ispartof>Soft matter, 2023-07, Vol.19 (26), p.5001-5015</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-580b1bcaa53a7256db48cf68bba4be8290afda5bcf5c61e10d5f24932255c03b3</citedby><cites>FETCH-LOGICAL-c417t-580b1bcaa53a7256db48cf68bba4be8290afda5bcf5c61e10d5f24932255c03b3</cites><orcidid>0009-0005-7577-7732 ; 0000-0003-0405-3380 ; 0000-0001-7834-5832 ; 0000-0002-6128-8517 ; 0000-0001-6848-2497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37357554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Michael H L</creatorcontrib><creatorcontrib>Dziura, Dominik</creatorcontrib><creatorcontrib>DiPasquale, Mitchell</creatorcontrib><creatorcontrib>Castillo, Stuart R</creatorcontrib><creatorcontrib>Kelley, Elizabeth G</creatorcontrib><creatorcontrib>Marquardt, Drew</creatorcontrib><title>Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like -alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of -alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.</description><subject>1-Hexanol</subject><subject>Alcohol</subject><subject>Alcohols</subject><subject>Calcein</subject><subject>Cell membranes</subject><subject>Fluidity</subject><subject>Hexanol</subject><subject>Leakage</subject><subject>Lipids</subject><subject>Molecular dynamics</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Rigidity</subject><subject>Small angle X ray scattering</subject><subject>Tapering</subject><subject>X-ray scattering</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpd0LtOwzAUBmALgWgpLDwAssSCkAK-Ji4bKpciFTFwEVtkO3bjKolL7FTq2xNo6cB0zvDp1zk_AKcYXWFEx9cFCTXCXNByDwxxxliSCib2dzv9HICjEBYIUcFweggGNKM845wNwcdTszIhurmMrpnDWBqou5h4a6Gx1ugIvYUNTGSlfemrAH0DK7d0Baz9ytSmiTdQQuX8slwHp2UFQ-yK9TE4sLIK5mQ7R-D94f5tMk1mL49Pk9tZohnOYsIFUlhpKTmVGeFpoZjQNhVKSaaMIGMkbSG50pbrFBuMCm4JG1NCONeIKjoCF5vcZeu_uv6RvHZBm6qSjfFdyEmfkSGeEtzT83904bu26a_rFaUIU4qzXl1ulG59CK2x-bJ1tWzXOUb5T9v5HXl9_m172uOzbWSnalPs6F-99BvJ7noI</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Nguyen, Michael H L</creator><creator>Dziura, Dominik</creator><creator>DiPasquale, Mitchell</creator><creator>Castillo, Stuart R</creator><creator>Kelley, Elizabeth G</creator><creator>Marquardt, Drew</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-7577-7732</orcidid><orcidid>https://orcid.org/0000-0003-0405-3380</orcidid><orcidid>https://orcid.org/0000-0001-7834-5832</orcidid><orcidid>https://orcid.org/0000-0002-6128-8517</orcidid><orcidid>https://orcid.org/0000-0001-6848-2497</orcidid></search><sort><creationdate>20230705</creationdate><title>Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study</title><author>Nguyen, Michael H L ; Dziura, Dominik ; DiPasquale, Mitchell ; Castillo, Stuart R ; Kelley, Elizabeth G ; Marquardt, Drew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-580b1bcaa53a7256db48cf68bba4be8290afda5bcf5c61e10d5f24932255c03b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>1-Hexanol</topic><topic>Alcohol</topic><topic>Alcohols</topic><topic>Calcein</topic><topic>Cell membranes</topic><topic>Fluidity</topic><topic>Hexanol</topic><topic>Leakage</topic><topic>Lipids</topic><topic>Molecular dynamics</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Rigidity</topic><topic>Small angle X ray scattering</topic><topic>Tapering</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Michael H L</creatorcontrib><creatorcontrib>Dziura, Dominik</creatorcontrib><creatorcontrib>DiPasquale, Mitchell</creatorcontrib><creatorcontrib>Castillo, Stuart R</creatorcontrib><creatorcontrib>Kelley, Elizabeth G</creatorcontrib><creatorcontrib>Marquardt, Drew</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Michael H L</au><au>Dziura, Dominik</au><au>DiPasquale, Mitchell</au><au>Castillo, Stuart R</au><au>Kelley, Elizabeth G</au><au>Marquardt, Drew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>19</volume><issue>26</issue><spage>5001</spage><epage>5015</epage><pages>5001-5015</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like -alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of -alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>37357554</pmid><doi>10.1039/d2sm01583h</doi><tpages>15</tpages><orcidid>https://orcid.org/0009-0005-7577-7732</orcidid><orcidid>https://orcid.org/0000-0003-0405-3380</orcidid><orcidid>https://orcid.org/0000-0001-7834-5832</orcidid><orcidid>https://orcid.org/0000-0002-6128-8517</orcidid><orcidid>https://orcid.org/0000-0001-6848-2497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2023-07, Vol.19 (26), p.5001-5015
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_miscellaneous_2829705621
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects 1-Hexanol
Alcohol
Alcohols
Calcein
Cell membranes
Fluidity
Hexanol
Leakage
Lipids
Molecular dynamics
Neutron scattering
Neutrons
Rigidity
Small angle X ray scattering
Tapering
X-ray scattering
title Investigating the cut-off effect of n -alcohols on lipid movement: a biophysical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20the%20cut-off%20effect%20of%20n%20-alcohols%20on%20lipid%20movement:%20a%20biophysical%20study&rft.jtitle=Soft%20matter&rft.au=Nguyen,%20Michael%20H%20L&rft.date=2023-07-05&rft.volume=19&rft.issue=26&rft.spage=5001&rft.epage=5015&rft.pages=5001-5015&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/d2sm01583h&rft_dat=%3Cproquest_cross%3E2833013317%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2833013317&rft_id=info:pmid/37357554&rfr_iscdi=true