Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction

Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2023-10, Vol.24 (19), p.e202300397-e202300397
Hauptverfasser: Wang, Shuo, Shao‐Yang Feng, Cong‐Cong Zhao, Ting‐Ting Zhao, Tian, Yu, Li‐Kai Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e202300397
container_issue 19
container_start_page e202300397
container_title Chemphyschem
container_volume 24
creator Wang, Shuo
Shao‐Yang Feng
Cong‐Cong Zhao
Ting‐Ting Zhao
Tian, Yu
Li‐Kai Yan
description Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.
doi_str_mv 10.1002/cphc.202300397
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829431977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874683993</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-bfb0352e5ec59ee602c1b2de713101f48d3412584a0886b342fd5144b97705803</originalsourceid><addsrcrecordid>eNpdzs1Kw0AQB_BFFKzVq-cFL15SZ7-ym6OEWoVCodWjlM1mUlPSbM1uBG8-gs_okxi1J08zzP83wxByyWDCAPiN27-4CQcuAESmj8iISZElOpXs-NBLLtQpOQthCwAGNBuR5yVu-sbGut3QaVXVrsY2UtuWdIUNuli_IV0NYYNfH582-h3NbbTNe4iBVr6j0x_Uefc7jLWj-YLTJZb9sOrbc3JS2SbgxaGOydPd9DG_T-aL2UN-O0_2XKUxKaoChOKo0KkMMQXuWMFL1EwwYJU0pZCMKyMtGJMWQvKqVEzKItMalAExJtd_d_edf-0xxPWuDg6bxrbo-7DmhmdSsIEP9Oof3fq-a4fvBqVlakSWCfENFfpj5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874683993</pqid></control><display><type>article</type><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><source>Wiley Online Library All Journals</source><creator>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</creator><creatorcontrib>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</creatorcontrib><description>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202300397</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon dioxide ; Catalysts ; Catalytic activity ; Chemical reduction ; Chromium ; Copper ; Density functional theory ; Electrocatalysts ; Hydrogen evolution reactions ; Manganese ; Substrates ; Transition metals</subject><ispartof>Chemphyschem, 2023-10, Vol.24 (19), p.e202300397-e202300397</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Shao‐Yang Feng</creatorcontrib><creatorcontrib>Cong‐Cong Zhao</creatorcontrib><creatorcontrib>Ting‐Ting Zhao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Li‐Kai Yan</creatorcontrib><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><title>Chemphyschem</title><description>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Substrates</subject><subject>Transition metals</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdzs1Kw0AQB_BFFKzVq-cFL15SZ7-ym6OEWoVCodWjlM1mUlPSbM1uBG8-gs_okxi1J08zzP83wxByyWDCAPiN27-4CQcuAESmj8iISZElOpXs-NBLLtQpOQthCwAGNBuR5yVu-sbGut3QaVXVrsY2UtuWdIUNuli_IV0NYYNfH582-h3NbbTNe4iBVr6j0x_Uefc7jLWj-YLTJZb9sOrbc3JS2SbgxaGOydPd9DG_T-aL2UN-O0_2XKUxKaoChOKo0KkMMQXuWMFL1EwwYJU0pZCMKyMtGJMWQvKqVEzKItMalAExJtd_d_edf-0xxPWuDg6bxrbo-7DmhmdSsIEP9Oof3fq-a4fvBqVlakSWCfENFfpj5w</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Wang, Shuo</creator><creator>Shao‐Yang Feng</creator><creator>Cong‐Cong Zhao</creator><creator>Ting‐Ting Zhao</creator><creator>Tian, Yu</creator><creator>Li‐Kai Yan</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20231004</creationdate><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><author>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-bfb0352e5ec59ee602c1b2de713101f48d3412584a0886b342fd5144b97705803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Substrates</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Shao‐Yang Feng</creatorcontrib><creatorcontrib>Cong‐Cong Zhao</creatorcontrib><creatorcontrib>Ting‐Ting Zhao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Li‐Kai Yan</creatorcontrib><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuo</au><au>Shao‐Yang Feng</au><au>Cong‐Cong Zhao</au><au>Ting‐Ting Zhao</au><au>Tian, Yu</au><au>Li‐Kai Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</atitle><jtitle>Chemphyschem</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>24</volume><issue>19</issue><spage>e202300397</spage><epage>e202300397</epage><pages>e202300397-e202300397</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.202300397</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2023-10, Vol.24 (19), p.e202300397-e202300397
issn 1439-4235
1439-7641
language eng
recordid cdi_proquest_miscellaneous_2829431977
source Wiley Online Library All Journals
subjects Carbon
Carbon dioxide
Catalysts
Catalytic activity
Chemical reduction
Chromium
Copper
Density functional theory
Electrocatalysts
Hydrogen evolution reactions
Manganese
Substrates
Transition metals
title Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Efficient%20and%20Selective%20Single%E2%80%90atom%20Catalysts%20for%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Chemphyschem&rft.au=Wang,%20Shuo&rft.date=2023-10-04&rft.volume=24&rft.issue=19&rft.spage=e202300397&rft.epage=e202300397&rft.pages=e202300397-e202300397&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202300397&rft_dat=%3Cproquest%3E2874683993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874683993&rft_id=info:pmid/&rfr_iscdi=true