Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction
Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting me...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2023-10, Vol.24 (19), p.e202300397-e202300397 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e202300397 |
---|---|
container_issue | 19 |
container_start_page | e202300397 |
container_title | Chemphyschem |
container_volume | 24 |
creator | Wang, Shuo Shao‐Yang Feng Cong‐Cong Zhao Ting‐Ting Zhao Tian, Yu Li‐Kai Yan |
description | Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons. |
doi_str_mv | 10.1002/cphc.202300397 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829431977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2874683993</sourcerecordid><originalsourceid>FETCH-LOGICAL-p256t-bfb0352e5ec59ee602c1b2de713101f48d3412584a0886b342fd5144b97705803</originalsourceid><addsrcrecordid>eNpdzs1Kw0AQB_BFFKzVq-cFL15SZ7-ym6OEWoVCodWjlM1mUlPSbM1uBG8-gs_okxi1J08zzP83wxByyWDCAPiN27-4CQcuAESmj8iISZElOpXs-NBLLtQpOQthCwAGNBuR5yVu-sbGut3QaVXVrsY2UtuWdIUNuli_IV0NYYNfH582-h3NbbTNe4iBVr6j0x_Uefc7jLWj-YLTJZb9sOrbc3JS2SbgxaGOydPd9DG_T-aL2UN-O0_2XKUxKaoChOKo0KkMMQXuWMFL1EwwYJU0pZCMKyMtGJMWQvKqVEzKItMalAExJtd_d_edf-0xxPWuDg6bxrbo-7DmhmdSsIEP9Oof3fq-a4fvBqVlakSWCfENFfpj5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2874683993</pqid></control><display><type>article</type><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><source>Wiley Online Library All Journals</source><creator>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</creator><creatorcontrib>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</creatorcontrib><description>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.202300397</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Carbon ; Carbon dioxide ; Catalysts ; Catalytic activity ; Chemical reduction ; Chromium ; Copper ; Density functional theory ; Electrocatalysts ; Hydrogen evolution reactions ; Manganese ; Substrates ; Transition metals</subject><ispartof>Chemphyschem, 2023-10, Vol.24 (19), p.e202300397-e202300397</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Shao‐Yang Feng</creatorcontrib><creatorcontrib>Cong‐Cong Zhao</creatorcontrib><creatorcontrib>Ting‐Ting Zhao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Li‐Kai Yan</creatorcontrib><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><title>Chemphyschem</title><description>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Chemical reduction</subject><subject>Chromium</subject><subject>Copper</subject><subject>Density functional theory</subject><subject>Electrocatalysts</subject><subject>Hydrogen evolution reactions</subject><subject>Manganese</subject><subject>Substrates</subject><subject>Transition metals</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdzs1Kw0AQB_BFFKzVq-cFL15SZ7-ym6OEWoVCodWjlM1mUlPSbM1uBG8-gs_okxi1J08zzP83wxByyWDCAPiN27-4CQcuAESmj8iISZElOpXs-NBLLtQpOQthCwAGNBuR5yVu-sbGut3QaVXVrsY2UtuWdIUNuli_IV0NYYNfH582-h3NbbTNe4iBVr6j0x_Uefc7jLWj-YLTJZb9sOrbc3JS2SbgxaGOydPd9DG_T-aL2UN-O0_2XKUxKaoChOKo0KkMMQXuWMFL1EwwYJU0pZCMKyMtGJMWQvKqVEzKItMalAExJtd_d_edf-0xxPWuDg6bxrbo-7DmhmdSsIEP9Oof3fq-a4fvBqVlakSWCfENFfpj5w</recordid><startdate>20231004</startdate><enddate>20231004</enddate><creator>Wang, Shuo</creator><creator>Shao‐Yang Feng</creator><creator>Cong‐Cong Zhao</creator><creator>Ting‐Ting Zhao</creator><creator>Tian, Yu</creator><creator>Li‐Kai Yan</creator><general>Wiley Subscription Services, Inc</general><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20231004</creationdate><title>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</title><author>Wang, Shuo ; Shao‐Yang Feng ; Cong‐Cong Zhao ; Ting‐Ting Zhao ; Tian, Yu ; Li‐Kai Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p256t-bfb0352e5ec59ee602c1b2de713101f48d3412584a0886b342fd5144b97705803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Chemical reduction</topic><topic>Chromium</topic><topic>Copper</topic><topic>Density functional theory</topic><topic>Electrocatalysts</topic><topic>Hydrogen evolution reactions</topic><topic>Manganese</topic><topic>Substrates</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Shao‐Yang Feng</creatorcontrib><creatorcontrib>Cong‐Cong Zhao</creatorcontrib><creatorcontrib>Ting‐Ting Zhao</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Li‐Kai Yan</creatorcontrib><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Shuo</au><au>Shao‐Yang Feng</au><au>Cong‐Cong Zhao</au><au>Ting‐Ting Zhao</au><au>Tian, Yu</au><au>Li‐Kai Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction</atitle><jtitle>Chemphyschem</jtitle><date>2023-10-04</date><risdate>2023</risdate><volume>24</volume><issue>19</issue><spage>e202300397</spage><epage>e202300397</epage><pages>e202300397-e202300397</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Anchoring transition metal (TM) atoms on suitable substrates to form single‐atom catalysts (SACs) is a novel approach to constructing electrocatalysts. Graphdiyne with sp−sp2 hybridized carbon atoms and uniformly distributed pores have been considered as a potential carbon material for supporting metal atoms in a variety of catalytic processes. Herein, density functional theory (DFT) calculations were performed to study the single TM atom anchoring on graphdiyne (TM1−GDY, TM=Sc, Ti, V, Cr, Mn, Co and Cu) as the catalysts for CO2 reduction. After anchoring metal atoms on GDY, the catalytic activity of TM1−GDY (TM=Mn, Co and Cu) for CO2 reduction reaction (CO2RR) are significantly improved comparing with the pristine GDY. Among the studied TM1−GDY, Cu1−GDY shows excellent electrocatalytic activity for CO2 reduction for which the product is HCOOH and the limiting potential (UL) is −0.16 V. Mn1−GDY and Co1−GDY exhibit superior catalytic selectivity for CO2 reduction to CH4 with UL of −0.62 and −0.34 V, respectively. The hydrogen evolution reaction (HER) by TM1−GDY (TM=Mn, Co and Cu) occurs on carbon atoms, while the active sites of CO2RR are the transition metal atoms . The present work is expected to provide a solid theoretical basis for CO2 conversion into valuable hydrocarbons.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/cphc.202300397</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2023-10, Vol.24 (19), p.e202300397-e202300397 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_2829431977 |
source | Wiley Online Library All Journals |
subjects | Carbon Carbon dioxide Catalysts Catalytic activity Chemical reduction Chromium Copper Density functional theory Electrocatalysts Hydrogen evolution reactions Manganese Substrates Transition metals |
title | Regulating Efficient and Selective Single‐atom Catalysts for Electrocatalytic CO2 Reduction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A17%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulating%20Efficient%20and%20Selective%20Single%E2%80%90atom%20Catalysts%20for%20Electrocatalytic%20CO2%20Reduction&rft.jtitle=Chemphyschem&rft.au=Wang,%20Shuo&rft.date=2023-10-04&rft.volume=24&rft.issue=19&rft.spage=e202300397&rft.epage=e202300397&rft.pages=e202300397-e202300397&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.202300397&rft_dat=%3Cproquest%3E2874683993%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2874683993&rft_id=info:pmid/&rfr_iscdi=true |