Using a deep learning neural network for the identification of malignant cells in effusion cytology material

Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytopathology (Oxford) 2023-09, Vol.34 (5), p.466-471
Hauptverfasser: Sanyal, Parikshit, Dey, Pranab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 471
container_issue 5
container_start_page 466
container_title Cytopathology (Oxford)
container_volume 34
creator Sanyal, Parikshit
Dey, Pranab
description Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between. Results In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92. Conclusion DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology. A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.
doi_str_mv 10.1111/cyt.13260
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829431378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829431378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</originalsourceid><addsrcrecordid>eNp10UFrHCEUB3ApKc0m7SFfoAi5tIdJ1DeuegxL2hQCvSSHngZn5rkxdXWjMyz77et20x4K9fIQf_x5z0fIBWdXvJ7rYT9dcRBL9oYsOCxlI4DBCVkwI5eNlEydkrNSnhnjwgh4R05BgWSc6QUJj8XHNbV0RNzSgDbHwz3inG2oZdql_JO6lOn0hNSPGCfv_GAnnyJNjm5s8Oto40QHDKFQHyk6N5fDc20rhbTeVzRh9ja8J2-dDQU_vNZz8vjl9mF119x___ptdXPfDCCBNb3UwiltpTEGWqa5aC1Y1YuWscFJrWAEhF4D071shUQBy743alDGjNYOcE4-HXO3Ob3MWKZu48uhPxsxzaUTWpgWOChd6eU_9DnNOdbuqmqV4FIKXtXnoxpyKiWj67bZb2zed5x1hxV0ddbu9wqq_fiaOPcbHP_KP39ewfUR7HzA_f-TutWPh2PkLzLej8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847215521</pqid></control><display><type>article</type><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><source>Access via Wiley Online Library</source><creator>Sanyal, Parikshit ; Dey, Pranab</creator><creatorcontrib>Sanyal, Parikshit ; Dey, Pranab</creatorcontrib><description>Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between. Results In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92. Conclusion DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology. A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</description><identifier>ISSN: 0956-5507</identifier><identifier>EISSN: 1365-2303</identifier><identifier>DOI: 10.1111/cyt.13260</identifier><identifier>PMID: 37350108</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adenocarcinoma ; artificial intelligence ; artificial neural network ; Cellular biology ; Cytology ; deep convolutional neural network ; Deep learning ; Effusion ; Malignancy ; Metastases ; Neural networks</subject><ispartof>Cytopathology (Oxford), 2023-09, Vol.34 (5), p.466-471</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2023 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</citedby><cites>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</cites><orcidid>0000-0001-9297-5400 ; 0000-0001-9262-2787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcyt.13260$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcyt.13260$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37350108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanyal, Parikshit</creatorcontrib><creatorcontrib>Dey, Pranab</creatorcontrib><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><title>Cytopathology (Oxford)</title><addtitle>Cytopathology</addtitle><description>Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between. Results In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92. Conclusion DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology. A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</description><subject>Adenocarcinoma</subject><subject>artificial intelligence</subject><subject>artificial neural network</subject><subject>Cellular biology</subject><subject>Cytology</subject><subject>deep convolutional neural network</subject><subject>Deep learning</subject><subject>Effusion</subject><subject>Malignancy</subject><subject>Metastases</subject><subject>Neural networks</subject><issn>0956-5507</issn><issn>1365-2303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10UFrHCEUB3ApKc0m7SFfoAi5tIdJ1DeuegxL2hQCvSSHngZn5rkxdXWjMyz77et20x4K9fIQf_x5z0fIBWdXvJ7rYT9dcRBL9oYsOCxlI4DBCVkwI5eNlEydkrNSnhnjwgh4R05BgWSc6QUJj8XHNbV0RNzSgDbHwz3inG2oZdql_JO6lOn0hNSPGCfv_GAnnyJNjm5s8Oto40QHDKFQHyk6N5fDc20rhbTeVzRh9ja8J2-dDQU_vNZz8vjl9mF119x___ptdXPfDCCBNb3UwiltpTEGWqa5aC1Y1YuWscFJrWAEhF4D071shUQBy743alDGjNYOcE4-HXO3Ob3MWKZu48uhPxsxzaUTWpgWOChd6eU_9DnNOdbuqmqV4FIKXtXnoxpyKiWj67bZb2zed5x1hxV0ddbu9wqq_fiaOPcbHP_KP39ewfUR7HzA_f-TutWPh2PkLzLej8Y</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Sanyal, Parikshit</creator><creator>Dey, Pranab</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9297-5400</orcidid><orcidid>https://orcid.org/0000-0001-9262-2787</orcidid></search><sort><creationdate>202309</creationdate><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><author>Sanyal, Parikshit ; Dey, Pranab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma</topic><topic>artificial intelligence</topic><topic>artificial neural network</topic><topic>Cellular biology</topic><topic>Cytology</topic><topic>deep convolutional neural network</topic><topic>Deep learning</topic><topic>Effusion</topic><topic>Malignancy</topic><topic>Metastases</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyal, Parikshit</creatorcontrib><creatorcontrib>Dey, Pranab</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytopathology (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyal, Parikshit</au><au>Dey, Pranab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</atitle><jtitle>Cytopathology (Oxford)</jtitle><addtitle>Cytopathology</addtitle><date>2023-09</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>466</spage><epage>471</epage><pages>466-471</pages><issn>0956-5507</issn><eissn>1365-2303</eissn><abstract>Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between. Results In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92. Conclusion DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology. A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37350108</pmid><doi>10.1111/cyt.13260</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9297-5400</orcidid><orcidid>https://orcid.org/0000-0001-9262-2787</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0956-5507
ispartof Cytopathology (Oxford), 2023-09, Vol.34 (5), p.466-471
issn 0956-5507
1365-2303
language eng
recordid cdi_proquest_miscellaneous_2829431378
source Access via Wiley Online Library
subjects Adenocarcinoma
artificial intelligence
artificial neural network
Cellular biology
Cytology
deep convolutional neural network
Deep learning
Effusion
Malignancy
Metastases
Neural networks
title Using a deep learning neural network for the identification of malignant cells in effusion cytology material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20deep%20learning%20neural%20network%20for%20the%20identification%20of%20malignant%20cells%20in%20effusion%20cytology%20material&rft.jtitle=Cytopathology%20(Oxford)&rft.au=Sanyal,%20Parikshit&rft.date=2023-09&rft.volume=34&rft.issue=5&rft.spage=466&rft.epage=471&rft.pages=466-471&rft.issn=0956-5507&rft.eissn=1365-2303&rft_id=info:doi/10.1111/cyt.13260&rft_dat=%3Cproquest_cross%3E2829431378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847215521&rft_id=info:pmid/37350108&rfr_iscdi=true