Using a deep learning neural network for the identification of malignant cells in effusion cytology material
Aim To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples. Materials and Methods In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign e...
Gespeichert in:
Veröffentlicht in: | Cytopathology (Oxford) 2023-09, Vol.34 (5), p.466-471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 471 |
---|---|
container_issue | 5 |
container_start_page | 466 |
container_title | Cytopathology (Oxford) |
container_volume | 34 |
creator | Sanyal, Parikshit Dey, Pranab |
description | Aim
To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples.
Materials and Methods
In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between.
Results
In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92.
Conclusion
DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology.
A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears. |
doi_str_mv | 10.1111/cyt.13260 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829431378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829431378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</originalsourceid><addsrcrecordid>eNp10UFrHCEUB3ApKc0m7SFfoAi5tIdJ1DeuegxL2hQCvSSHngZn5rkxdXWjMyz77et20x4K9fIQf_x5z0fIBWdXvJ7rYT9dcRBL9oYsOCxlI4DBCVkwI5eNlEydkrNSnhnjwgh4R05BgWSc6QUJj8XHNbV0RNzSgDbHwz3inG2oZdql_JO6lOn0hNSPGCfv_GAnnyJNjm5s8Oto40QHDKFQHyk6N5fDc20rhbTeVzRh9ja8J2-dDQU_vNZz8vjl9mF119x___ptdXPfDCCBNb3UwiltpTEGWqa5aC1Y1YuWscFJrWAEhF4D071shUQBy743alDGjNYOcE4-HXO3Ob3MWKZu48uhPxsxzaUTWpgWOChd6eU_9DnNOdbuqmqV4FIKXtXnoxpyKiWj67bZb2zed5x1hxV0ddbu9wqq_fiaOPcbHP_KP39ewfUR7HzA_f-TutWPh2PkLzLej8Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847215521</pqid></control><display><type>article</type><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><source>Access via Wiley Online Library</source><creator>Sanyal, Parikshit ; Dey, Pranab</creator><creatorcontrib>Sanyal, Parikshit ; Dey, Pranab</creatorcontrib><description>Aim
To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples.
Materials and Methods
In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between.
Results
In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92.
Conclusion
DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology.
A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</description><identifier>ISSN: 0956-5507</identifier><identifier>EISSN: 1365-2303</identifier><identifier>DOI: 10.1111/cyt.13260</identifier><identifier>PMID: 37350108</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adenocarcinoma ; artificial intelligence ; artificial neural network ; Cellular biology ; Cytology ; deep convolutional neural network ; Deep learning ; Effusion ; Malignancy ; Metastases ; Neural networks</subject><ispartof>Cytopathology (Oxford), 2023-09, Vol.34 (5), p.466-471</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</citedby><cites>FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</cites><orcidid>0000-0001-9297-5400 ; 0000-0001-9262-2787</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcyt.13260$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcyt.13260$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37350108$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sanyal, Parikshit</creatorcontrib><creatorcontrib>Dey, Pranab</creatorcontrib><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><title>Cytopathology (Oxford)</title><addtitle>Cytopathology</addtitle><description>Aim
To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples.
Materials and Methods
In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between.
Results
In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92.
Conclusion
DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology.
A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</description><subject>Adenocarcinoma</subject><subject>artificial intelligence</subject><subject>artificial neural network</subject><subject>Cellular biology</subject><subject>Cytology</subject><subject>deep convolutional neural network</subject><subject>Deep learning</subject><subject>Effusion</subject><subject>Malignancy</subject><subject>Metastases</subject><subject>Neural networks</subject><issn>0956-5507</issn><issn>1365-2303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10UFrHCEUB3ApKc0m7SFfoAi5tIdJ1DeuegxL2hQCvSSHngZn5rkxdXWjMyz77et20x4K9fIQf_x5z0fIBWdXvJ7rYT9dcRBL9oYsOCxlI4DBCVkwI5eNlEydkrNSnhnjwgh4R05BgWSc6QUJj8XHNbV0RNzSgDbHwz3inG2oZdql_JO6lOn0hNSPGCfv_GAnnyJNjm5s8Oto40QHDKFQHyk6N5fDc20rhbTeVzRh9ja8J2-dDQU_vNZz8vjl9mF119x___ptdXPfDCCBNb3UwiltpTEGWqa5aC1Y1YuWscFJrWAEhF4D071shUQBy743alDGjNYOcE4-HXO3Ob3MWKZu48uhPxsxzaUTWpgWOChd6eU_9DnNOdbuqmqV4FIKXtXnoxpyKiWj67bZb2zed5x1hxV0ddbu9wqq_fiaOPcbHP_KP39ewfUR7HzA_f-TutWPh2PkLzLej8Y</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Sanyal, Parikshit</creator><creator>Dey, Pranab</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9297-5400</orcidid><orcidid>https://orcid.org/0000-0001-9262-2787</orcidid></search><sort><creationdate>202309</creationdate><title>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</title><author>Sanyal, Parikshit ; Dey, Pranab</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3530-b582f78a59993408124a3a7b2400cf5873d3e3b8308b5425e236bb97c799daac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adenocarcinoma</topic><topic>artificial intelligence</topic><topic>artificial neural network</topic><topic>Cellular biology</topic><topic>Cytology</topic><topic>deep convolutional neural network</topic><topic>Deep learning</topic><topic>Effusion</topic><topic>Malignancy</topic><topic>Metastases</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanyal, Parikshit</creatorcontrib><creatorcontrib>Dey, Pranab</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytopathology (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanyal, Parikshit</au><au>Dey, Pranab</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a deep learning neural network for the identification of malignant cells in effusion cytology material</atitle><jtitle>Cytopathology (Oxford)</jtitle><addtitle>Cytopathology</addtitle><date>2023-09</date><risdate>2023</risdate><volume>34</volume><issue>5</issue><spage>466</spage><epage>471</epage><pages>466-471</pages><issn>0956-5507</issn><eissn>1365-2303</eissn><abstract>Aim
To evaluate the application of an artificial neural network in the detection of malignant cells in effusion samples.
Materials and Methods
In this retrospective study, we selected 90 cases of effusion cytology samples over 2 years. There were 52 cases of metastatic adenocarcinoma and 38 benign effusion samples. In each case, an average of five microphotographs from the representative areas were taken at 40× magnification from Papanicolaou‐stained samples. A total of 492 images were obtained from these 90 cases. We applied a deep convolutional neural network (DCNN) model to identify malignant cells in the cytology images of effusion cytology smears. The training was performed for 15 epochs. The model consisted of 783 layers with 188 convolution‐max pool layers in between.
Results
In the test set, the DCNN model correctly identified 54 of 56 images of benign samples and 49 out of 56 images of malignant samples. It showed 88% sensitivity, 96% specificity and 96% positive predictive value in the screening of malignant cases in effusion. The area under the receiver operating curve was 0.92.
Conclusion
DCNN is a unique technology that can detect malignant cells from cytological images. The model works rapidly and there is no bias in cell selection or feature extraction. The present DCNN model is promising and can have a significant impact on the diagnosis of malignancy in cytology.
A deep convolutional network model to classify benign and malignant cells in images of effusion cytology smears.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37350108</pmid><doi>10.1111/cyt.13260</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9297-5400</orcidid><orcidid>https://orcid.org/0000-0001-9262-2787</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5507 |
ispartof | Cytopathology (Oxford), 2023-09, Vol.34 (5), p.466-471 |
issn | 0956-5507 1365-2303 |
language | eng |
recordid | cdi_proquest_miscellaneous_2829431378 |
source | Access via Wiley Online Library |
subjects | Adenocarcinoma artificial intelligence artificial neural network Cellular biology Cytology deep convolutional neural network Deep learning Effusion Malignancy Metastases Neural networks |
title | Using a deep learning neural network for the identification of malignant cells in effusion cytology material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A11%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%20deep%20learning%20neural%20network%20for%20the%20identification%20of%20malignant%20cells%20in%20effusion%20cytology%20material&rft.jtitle=Cytopathology%20(Oxford)&rft.au=Sanyal,%20Parikshit&rft.date=2023-09&rft.volume=34&rft.issue=5&rft.spage=466&rft.epage=471&rft.pages=466-471&rft.issn=0956-5507&rft.eissn=1365-2303&rft_id=info:doi/10.1111/cyt.13260&rft_dat=%3Cproquest_cross%3E2829431378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847215521&rft_id=info:pmid/37350108&rfr_iscdi=true |