Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information

The distinctions in pathological types and genetic subtypes of lung cancer have a direct impact on the choice of treatment choices and clinical prognosis in clinical practice. This study used pathological histological sections of surgically removed or biopsied tumor tissue from 36 patients. Based on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biophotonics 2023-10, Vol.16 (10), p.e202300174-n/a
Hauptverfasser: Tian, Chongxuan, Zhu, He, Meng, Xiangwei, Ma, Zhixiang, Yuan, Shuanghu, Li, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page e202300174
container_title Journal of biophotonics
container_volume 16
creator Tian, Chongxuan
Zhu, He
Meng, Xiangwei
Ma, Zhixiang
Yuan, Shuanghu
Li, Wei
description The distinctions in pathological types and genetic subtypes of lung cancer have a direct impact on the choice of treatment choices and clinical prognosis in clinical practice. This study used pathological histological sections of surgically removed or biopsied tumor tissue from 36 patients. Based on a small sample size, millions of spectral data points were extracted to investigate the feasibility of employing intracellular fluorescent fingerprint information to diagnose the pathological types and mutational status of lung cancer. The intracellular fluorescent fingerprint information revealed the EGFR gene mutation characteristics in lung cancer, and the area under the curve (AUC) value for the optimal model was 0.98. For the classification of lung cancer pathological types, the macro average AUC value for the ensemble‐learning model was 0.97. Our research contributes new idea for pathological diagnosis of lung cancer and offers a quick, easy, and accurate auxiliary diagnostic approach. The spectral fingerprint information within lung cancer cells is captured using hyperspectral imaging, and then spatial and spectral information is extracted pixel by pixel to form a new two‐dimensional image, which is then input into different algorithmic models for identification and classification.
doi_str_mv 10.1002/jbio.202300174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829431037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2873211627</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3284-2214b5db2a5862fdfdd062742659935441dd2c688dcd2d0954c17ee08437d8153</originalsourceid><addsrcrecordid>eNqFkc1rGzEQxUVJaBK31x6LIJdc7Iw-dld7bEy-SiAQUuht0UqzrsxaSqUVbf77yDh1IZecZg6_eTPzHiFfGCwYAD9f9y4sOHABwBr5gRwzVcs51FId7Hvx84icpLQGqEFU4iM5Eo2oAAQ7JukBE-poftEhRKqNyVFPSHX-60an4zO1Tq98SC7RMNAx-xU12huMtNcJLQ2eOj9FbXAc86gjHcYcIiaDfqKD8yuMT7EQhSoLNnpywX8ih4MeE35-rTPy4-rycXkzv7u_vl1-u5sbwZWcc85kX9me60rVfLCDtVDzRvK6altRScms5aZWyhrLLbSVNKxBBCVFYxWrxIyc7XSfYvidMU3dxqXtodpjyKnjirdSMChuzMjpG3QdcvTlukI1gjNWNhdqsaNMDClFHLry26a41DHotnF02zi6fRxl4OurbO43aPf4P_8L0O6AP27E53fkuu8Xt_f_xV8AYWeXwQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2873211627</pqid></control><display><type>article</type><title>Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information</title><source>Access via Wiley Online Library</source><creator>Tian, Chongxuan ; Zhu, He ; Meng, Xiangwei ; Ma, Zhixiang ; Yuan, Shuanghu ; Li, Wei</creator><creatorcontrib>Tian, Chongxuan ; Zhu, He ; Meng, Xiangwei ; Ma, Zhixiang ; Yuan, Shuanghu ; Li, Wei</creatorcontrib><description>The distinctions in pathological types and genetic subtypes of lung cancer have a direct impact on the choice of treatment choices and clinical prognosis in clinical practice. This study used pathological histological sections of surgically removed or biopsied tumor tissue from 36 patients. Based on a small sample size, millions of spectral data points were extracted to investigate the feasibility of employing intracellular fluorescent fingerprint information to diagnose the pathological types and mutational status of lung cancer. The intracellular fluorescent fingerprint information revealed the EGFR gene mutation characteristics in lung cancer, and the area under the curve (AUC) value for the optimal model was 0.98. For the classification of lung cancer pathological types, the macro average AUC value for the ensemble‐learning model was 0.97. Our research contributes new idea for pathological diagnosis of lung cancer and offers a quick, easy, and accurate auxiliary diagnostic approach. The spectral fingerprint information within lung cancer cells is captured using hyperspectral imaging, and then spatial and spectral information is extracted pixel by pixel to form a new two‐dimensional image, which is then input into different algorithmic models for identification and classification.</description><identifier>ISSN: 1864-063X</identifier><identifier>EISSN: 1864-0648</identifier><identifier>DOI: 10.1002/jbio.202300174</identifier><identifier>PMID: 37350031</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>auxiliary diagnosis ; Data points ; Diagnosis ; Epidermal growth factor receptors ; Fingerprints ; Fluorescence ; fluorescent fingerprint ; hyperspectral imaging ; integrated learning ; Intracellular ; Lung cancer ; Point mutation</subject><ispartof>Journal of biophotonics, 2023-10, Vol.16 (10), p.e202300174-n/a</ispartof><rights>2023 Wiley‐VCH GmbH.</rights><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3284-2214b5db2a5862fdfdd062742659935441dd2c688dcd2d0954c17ee08437d8153</cites><orcidid>0000-0001-7367-4178</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjbio.202300174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjbio.202300174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37350031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tian, Chongxuan</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Ma, Zhixiang</creatorcontrib><creatorcontrib>Yuan, Shuanghu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><title>Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information</title><title>Journal of biophotonics</title><addtitle>J Biophotonics</addtitle><description>The distinctions in pathological types and genetic subtypes of lung cancer have a direct impact on the choice of treatment choices and clinical prognosis in clinical practice. This study used pathological histological sections of surgically removed or biopsied tumor tissue from 36 patients. Based on a small sample size, millions of spectral data points were extracted to investigate the feasibility of employing intracellular fluorescent fingerprint information to diagnose the pathological types and mutational status of lung cancer. The intracellular fluorescent fingerprint information revealed the EGFR gene mutation characteristics in lung cancer, and the area under the curve (AUC) value for the optimal model was 0.98. For the classification of lung cancer pathological types, the macro average AUC value for the ensemble‐learning model was 0.97. Our research contributes new idea for pathological diagnosis of lung cancer and offers a quick, easy, and accurate auxiliary diagnostic approach. The spectral fingerprint information within lung cancer cells is captured using hyperspectral imaging, and then spatial and spectral information is extracted pixel by pixel to form a new two‐dimensional image, which is then input into different algorithmic models for identification and classification.</description><subject>auxiliary diagnosis</subject><subject>Data points</subject><subject>Diagnosis</subject><subject>Epidermal growth factor receptors</subject><subject>Fingerprints</subject><subject>Fluorescence</subject><subject>fluorescent fingerprint</subject><subject>hyperspectral imaging</subject><subject>integrated learning</subject><subject>Intracellular</subject><subject>Lung cancer</subject><subject>Point mutation</subject><issn>1864-063X</issn><issn>1864-0648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkc1rGzEQxUVJaBK31x6LIJdc7Iw-dld7bEy-SiAQUuht0UqzrsxaSqUVbf77yDh1IZecZg6_eTPzHiFfGCwYAD9f9y4sOHABwBr5gRwzVcs51FId7Hvx84icpLQGqEFU4iM5Eo2oAAQ7JukBE-poftEhRKqNyVFPSHX-60an4zO1Tq98SC7RMNAx-xU12huMtNcJLQ2eOj9FbXAc86gjHcYcIiaDfqKD8yuMT7EQhSoLNnpywX8ih4MeE35-rTPy4-rycXkzv7u_vl1-u5sbwZWcc85kX9me60rVfLCDtVDzRvK6altRScms5aZWyhrLLbSVNKxBBCVFYxWrxIyc7XSfYvidMU3dxqXtodpjyKnjirdSMChuzMjpG3QdcvTlukI1gjNWNhdqsaNMDClFHLry26a41DHotnF02zi6fRxl4OurbO43aPf4P_8L0O6AP27E53fkuu8Xt_f_xV8AYWeXwQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Tian, Chongxuan</creator><creator>Zhu, He</creator><creator>Meng, Xiangwei</creator><creator>Ma, Zhixiang</creator><creator>Yuan, Shuanghu</creator><creator>Li, Wei</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>K9.</scope><scope>L7M</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7367-4178</orcidid></search><sort><creationdate>202310</creationdate><title>Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information</title><author>Tian, Chongxuan ; Zhu, He ; Meng, Xiangwei ; Ma, Zhixiang ; Yuan, Shuanghu ; Li, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3284-2214b5db2a5862fdfdd062742659935441dd2c688dcd2d0954c17ee08437d8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>auxiliary diagnosis</topic><topic>Data points</topic><topic>Diagnosis</topic><topic>Epidermal growth factor receptors</topic><topic>Fingerprints</topic><topic>Fluorescence</topic><topic>fluorescent fingerprint</topic><topic>hyperspectral imaging</topic><topic>integrated learning</topic><topic>Intracellular</topic><topic>Lung cancer</topic><topic>Point mutation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Chongxuan</creatorcontrib><creatorcontrib>Zhu, He</creatorcontrib><creatorcontrib>Meng, Xiangwei</creatorcontrib><creatorcontrib>Ma, Zhixiang</creatorcontrib><creatorcontrib>Yuan, Shuanghu</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biophotonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Chongxuan</au><au>Zhu, He</au><au>Meng, Xiangwei</au><au>Ma, Zhixiang</au><au>Yuan, Shuanghu</au><au>Li, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information</atitle><jtitle>Journal of biophotonics</jtitle><addtitle>J Biophotonics</addtitle><date>2023-10</date><risdate>2023</risdate><volume>16</volume><issue>10</issue><spage>e202300174</spage><epage>n/a</epage><pages>e202300174-n/a</pages><issn>1864-063X</issn><eissn>1864-0648</eissn><abstract>The distinctions in pathological types and genetic subtypes of lung cancer have a direct impact on the choice of treatment choices and clinical prognosis in clinical practice. This study used pathological histological sections of surgically removed or biopsied tumor tissue from 36 patients. Based on a small sample size, millions of spectral data points were extracted to investigate the feasibility of employing intracellular fluorescent fingerprint information to diagnose the pathological types and mutational status of lung cancer. The intracellular fluorescent fingerprint information revealed the EGFR gene mutation characteristics in lung cancer, and the area under the curve (AUC) value for the optimal model was 0.98. For the classification of lung cancer pathological types, the macro average AUC value for the ensemble‐learning model was 0.97. Our research contributes new idea for pathological diagnosis of lung cancer and offers a quick, easy, and accurate auxiliary diagnostic approach. The spectral fingerprint information within lung cancer cells is captured using hyperspectral imaging, and then spatial and spectral information is extracted pixel by pixel to form a new two‐dimensional image, which is then input into different algorithmic models for identification and classification.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><pmid>37350031</pmid><doi>10.1002/jbio.202300174</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7367-4178</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-063X
ispartof Journal of biophotonics, 2023-10, Vol.16 (10), p.e202300174-n/a
issn 1864-063X
1864-0648
language eng
recordid cdi_proquest_miscellaneous_2829431037
source Access via Wiley Online Library
subjects auxiliary diagnosis
Data points
Diagnosis
Epidermal growth factor receptors
Fingerprints
Fluorescence
fluorescent fingerprint
hyperspectral imaging
integrated learning
Intracellular
Lung cancer
Point mutation
title Research for accurate auxiliary diagnosis of lung cancer based on intracellular fluorescent fingerprint information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T02%3A59%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20for%20accurate%20auxiliary%20diagnosis%20of%20lung%20cancer%20based%20on%20intracellular%20fluorescent%20fingerprint%20information&rft.jtitle=Journal%20of%20biophotonics&rft.au=Tian,%20Chongxuan&rft.date=2023-10&rft.volume=16&rft.issue=10&rft.spage=e202300174&rft.epage=n/a&rft.pages=e202300174-n/a&rft.issn=1864-063X&rft.eissn=1864-0648&rft_id=info:doi/10.1002/jbio.202300174&rft_dat=%3Cproquest_cross%3E2873211627%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2873211627&rft_id=info:pmid/37350031&rfr_iscdi=true