A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species

[Display omitted] •A novel integrated automatic identification strategy was established via Python.•117 amino acid derivatives were tentatively characterized from 67 species of seeds.•Amino acid profiles of gymnosperm and angiosperm seeds have been extensively analyzed.•The seeds from Fabaceae and R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2023-11, Vol.426, p.136670-136670, Article 136670
Hauptverfasser: Ding, Yelin, Bi, Qirui, Huang, Dongdong, Liao, Jingmei, Yang, Lin, Luo, Xiaoxiao, Yang, Peilei, Li, Yun, Yao, Changliang, Wei, Wenlong, Zhang, Jianqing, Li, Jiayuan, Huang, Yong, Guo, De-an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136670
container_issue
container_start_page 136670
container_title Food chemistry
container_volume 426
creator Ding, Yelin
Bi, Qirui
Huang, Dongdong
Liao, Jingmei
Yang, Lin
Luo, Xiaoxiao
Yang, Peilei
Li, Yun
Yao, Changliang
Wei, Wenlong
Zhang, Jianqing
Li, Jiayuan
Huang, Yong
Guo, De-an
description [Display omitted] •A novel integrated automatic identification strategy was established via Python.•117 amino acid derivatives were tentatively characterized from 67 species of seeds.•Amino acid profiles of gymnosperm and angiosperm seeds have been extensively analyzed.•The seeds from Fabaceae and Rosaceae familes differed in amino acid profiles. The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.
doi_str_mv 10.1016/j.foodchem.2023.136670
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829430592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0308814623012888</els_id><sourcerecordid>2849896274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-8d2db4194a89e04e880294d3f0494195ecd2026ca3e27e7637d7e7186ad827f33</originalsourceid><addsrcrecordid>eNqNkc1PGzEQxa2qqATafwH52MsGf8X23opQ-ZCQeilny7FnwdHuOngcpPz3OApwbU8jjX5vnuY9Qi44W3LG9eVmOeQcwzNMS8GEXHKptWFfyIJbIzvDjPhKFkwy21mu9Ck5Q9wwxgTj9hs5lUau1MrYBVlf0Tm_wkjTXOGp-AqR-l3Nk68pUKyHzdOeDrlQP6U5Ux9SpCFP24yppjxTP_txjwlpHigCRKRDyRPVhuIWQgL8Tk4GPyL8eJ_n5PHm99_ru-7hz-399dVDF6SytbNRxLXivfK2B6bAWiZ6FeXAVN_WKwixfaqDlyAMGC1NbINb7aMVZpDynPw83t2W_LIDrG5KGGAc_Qx5h05Y1dteC6P-A23Wkq160VB9REPJiAUGty1p8mXvOHOHKtzGfVThDlW4YxVNePHusVtPED9lH9k34NcRgBbKa4LisMU1B4ipQKgu5vQvjzcgDJ0b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829430592</pqid></control><display><type>article</type><title>A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Ding, Yelin ; Bi, Qirui ; Huang, Dongdong ; Liao, Jingmei ; Yang, Lin ; Luo, Xiaoxiao ; Yang, Peilei ; Li, Yun ; Yao, Changliang ; Wei, Wenlong ; Zhang, Jianqing ; Li, Jiayuan ; Huang, Yong ; Guo, De-an</creator><creatorcontrib>Ding, Yelin ; Bi, Qirui ; Huang, Dongdong ; Liao, Jingmei ; Yang, Lin ; Luo, Xiaoxiao ; Yang, Peilei ; Li, Yun ; Yao, Changliang ; Wei, Wenlong ; Zhang, Jianqing ; Li, Jiayuan ; Huang, Yong ; Guo, De-an</creatorcontrib><description>[Display omitted] •A novel integrated automatic identification strategy was established via Python.•117 amino acid derivatives were tentatively characterized from 67 species of seeds.•Amino acid profiles of gymnosperm and angiosperm seeds have been extensively analyzed.•The seeds from Fabaceae and Rosaceae familes differed in amino acid profiles. The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.</description><identifier>ISSN: 0308-8146</identifier><identifier>EISSN: 1873-7072</identifier><identifier>DOI: 10.1016/j.foodchem.2023.136670</identifier><identifier>PMID: 37354578</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>amino acid composition ; Amino acids ; Amino Acids - analysis ; Angiospermae ; Automatic neutral loss filtering ; automation ; Chromatography, High Pressure Liquid ; Cycadopsida - chemistry ; data collection ; food chemistry ; Gymnospermae ; isothiocyanates ; Magnoliopsida - chemistry ; Mass Spectrometry ; medicine ; phenotype ; Phenyl isothiocyanate ; Phylogeny ; Python ; Seeds ; Seeds - chemistry</subject><ispartof>Food chemistry, 2023-11, Vol.426, p.136670-136670, Article 136670</ispartof><rights>2023 Elsevier Ltd</rights><rights>Copyright © 2023 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c348t-8d2db4194a89e04e880294d3f0494195ecd2026ca3e27e7637d7e7186ad827f33</cites><orcidid>0000-0003-0223-9448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.foodchem.2023.136670$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37354578$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Yelin</creatorcontrib><creatorcontrib>Bi, Qirui</creatorcontrib><creatorcontrib>Huang, Dongdong</creatorcontrib><creatorcontrib>Liao, Jingmei</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Luo, Xiaoxiao</creatorcontrib><creatorcontrib>Yang, Peilei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yao, Changliang</creatorcontrib><creatorcontrib>Wei, Wenlong</creatorcontrib><creatorcontrib>Zhang, Jianqing</creatorcontrib><creatorcontrib>Li, Jiayuan</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Guo, De-an</creatorcontrib><title>A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>[Display omitted] •A novel integrated automatic identification strategy was established via Python.•117 amino acid derivatives were tentatively characterized from 67 species of seeds.•Amino acid profiles of gymnosperm and angiosperm seeds have been extensively analyzed.•The seeds from Fabaceae and Rosaceae familes differed in amino acid profiles. The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.</description><subject>amino acid composition</subject><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Angiospermae</subject><subject>Automatic neutral loss filtering</subject><subject>automation</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Cycadopsida - chemistry</subject><subject>data collection</subject><subject>food chemistry</subject><subject>Gymnospermae</subject><subject>isothiocyanates</subject><subject>Magnoliopsida - chemistry</subject><subject>Mass Spectrometry</subject><subject>medicine</subject><subject>phenotype</subject><subject>Phenyl isothiocyanate</subject><subject>Phylogeny</subject><subject>Python</subject><subject>Seeds</subject><subject>Seeds - chemistry</subject><issn>0308-8146</issn><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1PGzEQxa2qqATafwH52MsGf8X23opQ-ZCQeilny7FnwdHuOngcpPz3OApwbU8jjX5vnuY9Qi44W3LG9eVmOeQcwzNMS8GEXHKptWFfyIJbIzvDjPhKFkwy21mu9Ck5Q9wwxgTj9hs5lUau1MrYBVlf0Tm_wkjTXOGp-AqR-l3Nk68pUKyHzdOeDrlQP6U5Ux9SpCFP24yppjxTP_txjwlpHigCRKRDyRPVhuIWQgL8Tk4GPyL8eJ_n5PHm99_ru-7hz-399dVDF6SytbNRxLXivfK2B6bAWiZ6FeXAVN_WKwixfaqDlyAMGC1NbINb7aMVZpDynPw83t2W_LIDrG5KGGAc_Qx5h05Y1dteC6P-A23Wkq160VB9REPJiAUGty1p8mXvOHOHKtzGfVThDlW4YxVNePHusVtPED9lH9k34NcRgBbKa4LisMU1B4ipQKgu5vQvjzcgDJ0b</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Ding, Yelin</creator><creator>Bi, Qirui</creator><creator>Huang, Dongdong</creator><creator>Liao, Jingmei</creator><creator>Yang, Lin</creator><creator>Luo, Xiaoxiao</creator><creator>Yang, Peilei</creator><creator>Li, Yun</creator><creator>Yao, Changliang</creator><creator>Wei, Wenlong</creator><creator>Zhang, Jianqing</creator><creator>Li, Jiayuan</creator><creator>Huang, Yong</creator><creator>Guo, De-an</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0223-9448</orcidid></search><sort><creationdate>20231115</creationdate><title>A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species</title><author>Ding, Yelin ; Bi, Qirui ; Huang, Dongdong ; Liao, Jingmei ; Yang, Lin ; Luo, Xiaoxiao ; Yang, Peilei ; Li, Yun ; Yao, Changliang ; Wei, Wenlong ; Zhang, Jianqing ; Li, Jiayuan ; Huang, Yong ; Guo, De-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-8d2db4194a89e04e880294d3f0494195ecd2026ca3e27e7637d7e7186ad827f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>amino acid composition</topic><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Angiospermae</topic><topic>Automatic neutral loss filtering</topic><topic>automation</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Cycadopsida - chemistry</topic><topic>data collection</topic><topic>food chemistry</topic><topic>Gymnospermae</topic><topic>isothiocyanates</topic><topic>Magnoliopsida - chemistry</topic><topic>Mass Spectrometry</topic><topic>medicine</topic><topic>phenotype</topic><topic>Phenyl isothiocyanate</topic><topic>Phylogeny</topic><topic>Python</topic><topic>Seeds</topic><topic>Seeds - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Yelin</creatorcontrib><creatorcontrib>Bi, Qirui</creatorcontrib><creatorcontrib>Huang, Dongdong</creatorcontrib><creatorcontrib>Liao, Jingmei</creatorcontrib><creatorcontrib>Yang, Lin</creatorcontrib><creatorcontrib>Luo, Xiaoxiao</creatorcontrib><creatorcontrib>Yang, Peilei</creatorcontrib><creatorcontrib>Li, Yun</creatorcontrib><creatorcontrib>Yao, Changliang</creatorcontrib><creatorcontrib>Wei, Wenlong</creatorcontrib><creatorcontrib>Zhang, Jianqing</creatorcontrib><creatorcontrib>Li, Jiayuan</creatorcontrib><creatorcontrib>Huang, Yong</creatorcontrib><creatorcontrib>Guo, De-an</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Yelin</au><au>Bi, Qirui</au><au>Huang, Dongdong</au><au>Liao, Jingmei</au><au>Yang, Lin</au><au>Luo, Xiaoxiao</au><au>Yang, Peilei</au><au>Li, Yun</au><au>Yao, Changliang</au><au>Wei, Wenlong</au><au>Zhang, Jianqing</au><au>Li, Jiayuan</au><au>Huang, Yong</au><au>Guo, De-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2023-11-15</date><risdate>2023</risdate><volume>426</volume><spage>136670</spage><epage>136670</epage><pages>136670-136670</pages><artnum>136670</artnum><issn>0308-8146</issn><eissn>1873-7072</eissn><abstract>[Display omitted] •A novel integrated automatic identification strategy was established via Python.•117 amino acid derivatives were tentatively characterized from 67 species of seeds.•Amino acid profiles of gymnosperm and angiosperm seeds have been extensively analyzed.•The seeds from Fabaceae and Rosaceae familes differed in amino acid profiles. The composition and quantity of amino acids (AAs) in seeds are complicated due to the various origins and modifications of different species. In this study, a novel automatic neutral loss filtering (ANLF) strategy based on accurate mass searching by Python was developed to analyze the free and hydrolyzed AA-phenyl isothiocyanate (PITC) derivatives from seeds of Gymnosperm and Angiosperm phyla. Compared with traditional strategies, ANLF showed much higher accuracy in screening AA derivatives by filtering nitrogen-containing non-AA compounds and efficiency in processing large datasets. Meanwhile, the content phenotype of 20 proteinogenic AAs from seeds of these two families was characterized by a 35-min HPLC method combined with an automated peak-matching strategy. AA profiles of 232 batches of seeds from 67 species, consisting of 19 proteinogenic AAs, 21 modified AAs, and 77 unknown AAs, would be a good reference for their application in food and medicine.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>37354578</pmid><doi>10.1016/j.foodchem.2023.136670</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0223-9448</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-8146
ispartof Food chemistry, 2023-11, Vol.426, p.136670-136670, Article 136670
issn 0308-8146
1873-7072
language eng
recordid cdi_proquest_miscellaneous_2829430592
source MEDLINE; Elsevier ScienceDirect Journals
subjects amino acid composition
Amino acids
Amino Acids - analysis
Angiospermae
Automatic neutral loss filtering
automation
Chromatography, High Pressure Liquid
Cycadopsida - chemistry
data collection
food chemistry
Gymnospermae
isothiocyanates
Magnoliopsida - chemistry
Mass Spectrometry
medicine
phenotype
Phenyl isothiocyanate
Phylogeny
Python
Seeds
Seeds - chemistry
title A novel integrated automatic strategy for amino acid composition analysis of seeds from 67 species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A38%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20integrated%20automatic%20strategy%20for%20amino%20acid%20composition%20analysis%20of%20seeds%20from%2067%20species&rft.jtitle=Food%20chemistry&rft.au=Ding,%20Yelin&rft.date=2023-11-15&rft.volume=426&rft.spage=136670&rft.epage=136670&rft.pages=136670-136670&rft.artnum=136670&rft.issn=0308-8146&rft.eissn=1873-7072&rft_id=info:doi/10.1016/j.foodchem.2023.136670&rft_dat=%3Cproquest_cross%3E2849896274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829430592&rft_id=info:pmid/37354578&rft_els_id=S0308814623012888&rfr_iscdi=true