Single-molecule photoelectron tunnelling spectroscopy
Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrro...
Gespeichert in:
Veröffentlicht in: | Nature materials 2023-08, Vol.22 (8), p.1007-1012 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1012 |
---|---|
container_issue | 8 |
container_start_page | 1007 |
container_title | Nature materials |
container_volume | 22 |
creator | Liu, Haojie Chen, Lijue Zhang, Hao Yang, Zhangqiang Ye, Jingyao Zhou, Ping Fang, Chao Xu, Wei Shi, Jia Liu, Junyang Yang, Ye Hong, Wenjing |
description | Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
The transmission spectrum reflects energy alignment between electrodes and frontier orbitals in single-molecule junctions but few experimental tools exist for characterization beyond the HOMO–LUMO gap. Here, the authors develop a single-molecule photoelectron tunnelling spectroscopy approach that makes it possible to map the transmission spectrum beyond the HOMO–LUMO gap at room temperature. |
doi_str_mv | 10.1038/s41563-023-01591-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829430037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2829430037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-8794d11033646713c57fdd02dab03fb2964f47ad9a8b164a9572aaaeccca8a4b3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EoqXwBxhQJRYWgx_XdjyiipdUiQGYLcdxSqskDnEy9N9jmgISA4NlX_u7x-cehM4puaaEZzcRqJAcE5YWFZpiOEBTCkpikJIc7s-UMjZBJzFuCGFUCHmMJlxx0FzDFImXdbOqPK5D5d1Q-Xn7HvrgU9F3oZn3Q9P4qkrMPLa7u-hCuz1FR6Wtoj_b7zP0dn_3unjEy-eHp8XtEjuuRI8zpaGgySuXIBXlTqiyKAgrbE54mTMtoQRlC22znEqwWihmrfXOOZtZyPkMXY26bRc-Bh97U6-jS4Zs48MQDcuYBk5ImmeGLv-gmzB0TXKXKOBaARCdKDZSLk0SO1-atlvXttsaSsxXqGYM1aRQzS5UA6npYi895LUvflq-U0wAH4GYnpqV737__kf2E_e8gbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2843974409</pqid></control><display><type>article</type><title>Single-molecule photoelectron tunnelling spectroscopy</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Liu, Haojie ; Chen, Lijue ; Zhang, Hao ; Yang, Zhangqiang ; Ye, Jingyao ; Zhou, Ping ; Fang, Chao ; Xu, Wei ; Shi, Jia ; Liu, Junyang ; Yang, Ye ; Hong, Wenjing</creator><creatorcontrib>Liu, Haojie ; Chen, Lijue ; Zhang, Hao ; Yang, Zhangqiang ; Ye, Jingyao ; Zhou, Ping ; Fang, Chao ; Xu, Wei ; Shi, Jia ; Liu, Junyang ; Yang, Ye ; Hong, Wenjing</creatorcontrib><description>Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
The transmission spectrum reflects energy alignment between electrodes and frontier orbitals in single-molecule junctions but few experimental tools exist for characterization beyond the HOMO–LUMO gap. Here, the authors develop a single-molecule photoelectron tunnelling spectroscopy approach that makes it possible to map the transmission spectrum beyond the HOMO–LUMO gap at room temperature.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-023-01591-4</identifier><identifier>PMID: 37349394</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/766/1130/2798 ; 639/925/357/995 ; Biomaterials ; Charge transport ; Chemistry and Materials Science ; Condensed Matter Physics ; Density functional theory ; Electric fields ; Electrical junctions ; Mapping ; Materials Science ; Molecular orbitals ; Nanotechnology ; Optical and Electronic Materials ; Photoelectric effect ; Photoelectrons ; Room temperature ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature materials, 2023-08, Vol.22 (8), p.1007-1012</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-8794d11033646713c57fdd02dab03fb2964f47ad9a8b164a9572aaaeccca8a4b3</citedby><cites>FETCH-LOGICAL-c375t-8794d11033646713c57fdd02dab03fb2964f47ad9a8b164a9572aaaeccca8a4b3</cites><orcidid>0000-0002-8872-2723 ; 0000-0002-7252-1900 ; 0000-0003-2827-3572 ; 0000-0003-4080-6175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37349394$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Yang, Zhangqiang</creatorcontrib><creatorcontrib>Ye, Jingyao</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><title>Single-molecule photoelectron tunnelling spectroscopy</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
The transmission spectrum reflects energy alignment between electrodes and frontier orbitals in single-molecule junctions but few experimental tools exist for characterization beyond the HOMO–LUMO gap. Here, the authors develop a single-molecule photoelectron tunnelling spectroscopy approach that makes it possible to map the transmission spectrum beyond the HOMO–LUMO gap at room temperature.</description><subject>119/118</subject><subject>639/766/1130/2798</subject><subject>639/925/357/995</subject><subject>Biomaterials</subject><subject>Charge transport</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Density functional theory</subject><subject>Electric fields</subject><subject>Electrical junctions</subject><subject>Mapping</subject><subject>Materials Science</subject><subject>Molecular orbitals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectric effect</subject><subject>Photoelectrons</subject><subject>Room temperature</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kDtPwzAUhS0EoqXwBxhQJRYWgx_XdjyiipdUiQGYLcdxSqskDnEy9N9jmgISA4NlX_u7x-cehM4puaaEZzcRqJAcE5YWFZpiOEBTCkpikJIc7s-UMjZBJzFuCGFUCHmMJlxx0FzDFImXdbOqPK5D5d1Q-Xn7HvrgU9F3oZn3Q9P4qkrMPLa7u-hCuz1FR6Wtoj_b7zP0dn_3unjEy-eHp8XtEjuuRI8zpaGgySuXIBXlTqiyKAgrbE54mTMtoQRlC22znEqwWihmrfXOOZtZyPkMXY26bRc-Bh97U6-jS4Zs48MQDcuYBk5ImmeGLv-gmzB0TXKXKOBaARCdKDZSLk0SO1-atlvXttsaSsxXqGYM1aRQzS5UA6npYi895LUvflq-U0wAH4GYnpqV737__kf2E_e8gbo</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Liu, Haojie</creator><creator>Chen, Lijue</creator><creator>Zhang, Hao</creator><creator>Yang, Zhangqiang</creator><creator>Ye, Jingyao</creator><creator>Zhou, Ping</creator><creator>Fang, Chao</creator><creator>Xu, Wei</creator><creator>Shi, Jia</creator><creator>Liu, Junyang</creator><creator>Yang, Ye</creator><creator>Hong, Wenjing</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8872-2723</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid><orcidid>https://orcid.org/0000-0003-2827-3572</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid></search><sort><creationdate>20230801</creationdate><title>Single-molecule photoelectron tunnelling spectroscopy</title><author>Liu, Haojie ; Chen, Lijue ; Zhang, Hao ; Yang, Zhangqiang ; Ye, Jingyao ; Zhou, Ping ; Fang, Chao ; Xu, Wei ; Shi, Jia ; Liu, Junyang ; Yang, Ye ; Hong, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-8794d11033646713c57fdd02dab03fb2964f47ad9a8b164a9572aaaeccca8a4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>639/766/1130/2798</topic><topic>639/925/357/995</topic><topic>Biomaterials</topic><topic>Charge transport</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Density functional theory</topic><topic>Electric fields</topic><topic>Electrical junctions</topic><topic>Mapping</topic><topic>Materials Science</topic><topic>Molecular orbitals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectric effect</topic><topic>Photoelectrons</topic><topic>Room temperature</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Haojie</creatorcontrib><creatorcontrib>Chen, Lijue</creatorcontrib><creatorcontrib>Zhang, Hao</creatorcontrib><creatorcontrib>Yang, Zhangqiang</creatorcontrib><creatorcontrib>Ye, Jingyao</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><creatorcontrib>Shi, Jia</creatorcontrib><creatorcontrib>Liu, Junyang</creatorcontrib><creatorcontrib>Yang, Ye</creatorcontrib><creatorcontrib>Hong, Wenjing</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Haojie</au><au>Chen, Lijue</au><au>Zhang, Hao</au><au>Yang, Zhangqiang</au><au>Ye, Jingyao</au><au>Zhou, Ping</au><au>Fang, Chao</au><au>Xu, Wei</au><au>Shi, Jia</au><au>Liu, Junyang</au><au>Yang, Ye</au><au>Hong, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-molecule photoelectron tunnelling spectroscopy</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>22</volume><issue>8</issue><spage>1007</spage><epage>1012</epage><pages>1007-1012</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Experimental mapping of transmission is essential for understanding and controlling charge transport through molecular devices and materials. Here we developed a single-molecule photoelectron tunnelling spectroscopy approach for mapping transmission beyond the HOMO–LUMO gap of the single diketopyrrolopyrrole molecule junction using an ultrafast-laser combined scanning tunnelling microscope-based break junction set-up at room temperature. Two resonant transport channels of ultrafast photocurrent are found by our photoelectron tunnelling spectroscopy, ranging from 1.31 eV to 1.77 eV, consistent with the LUMO + 1 and LUMO + 2 in the transmission spectrum obtained by density functional theory calculations. Moreover, we observed the modulation of resonant peaks by varying bias voltages, which demonstrates the ability to quantitatively characterize the effect of the electric field on frontier molecular orbitals. Our single-molecule photoelectron tunnelling spectroscopy offers an avenue that allows us to explore the nature of energy-dependent charge transport through single-molecule junctions.
The transmission spectrum reflects energy alignment between electrodes and frontier orbitals in single-molecule junctions but few experimental tools exist for characterization beyond the HOMO–LUMO gap. Here, the authors develop a single-molecule photoelectron tunnelling spectroscopy approach that makes it possible to map the transmission spectrum beyond the HOMO–LUMO gap at room temperature.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37349394</pmid><doi>10.1038/s41563-023-01591-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8872-2723</orcidid><orcidid>https://orcid.org/0000-0002-7252-1900</orcidid><orcidid>https://orcid.org/0000-0003-2827-3572</orcidid><orcidid>https://orcid.org/0000-0003-4080-6175</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2023-08, Vol.22 (8), p.1007-1012 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_2829430037 |
source | Nature; Alma/SFX Local Collection |
subjects | 119/118 639/766/1130/2798 639/925/357/995 Biomaterials Charge transport Chemistry and Materials Science Condensed Matter Physics Density functional theory Electric fields Electrical junctions Mapping Materials Science Molecular orbitals Nanotechnology Optical and Electronic Materials Photoelectric effect Photoelectrons Room temperature Spectroscopy Spectrum analysis |
title | Single-molecule photoelectron tunnelling spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A36%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-molecule%20photoelectron%20tunnelling%20spectroscopy&rft.jtitle=Nature%20materials&rft.au=Liu,%20Haojie&rft.date=2023-08-01&rft.volume=22&rft.issue=8&rft.spage=1007&rft.epage=1012&rft.pages=1007-1012&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-023-01591-4&rft_dat=%3Cproquest_cross%3E2829430037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2843974409&rft_id=info:pmid/37349394&rfr_iscdi=true |