SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations

High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2023-08, Vol.88, p.102867-102867, Article 102867
Hauptverfasser: Pan, Xipeng, Cheng, Jijun, Hou, Feihu, Lan, Rushi, Lu, Cheng, Li, Lingqiao, Feng, Zhengyun, Wang, Huadeng, Liang, Changhong, Liu, Zhenbing, Chen, Xin, Han, Chu, Liu, Zaiyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102867
container_issue
container_start_page 102867
container_title Medical image analysis
container_volume 88
creator Pan, Xipeng
Cheng, Jijun
Hou, Feihu
Lan, Rushi
Lu, Cheng
Li, Lingqiao
Feng, Zhengyun
Wang, Huadeng
Liang, Changhong
Liu, Zhenbing
Chen, Xin
Han, Chu
Liu, Zaiyi
description High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls. •We introduce a nuclear segmentation and classification framework with three branches of U-shape network.•Multi-task correlation attention (MTCA) mechanism is proposed to encourage the feature interaction and fusion across different tasks.•Cost-sensitive learning strategy is proposed to tackle serious imbalance of different cell types.•Coarse-to-fine marker-controlled watershed scheme is presented to alleviate the fragmentation of cells.•Extensive experiments demonstrate the proposed method achieves promising performance on two datasets.
doi_str_mv 10.1016/j.media.2023.102867
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2829425859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841523001275</els_id><sourcerecordid>2829425859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-40da73694b1a1e4688e0313e7be1940d5080ad62fdc3290ea818bd189d3221343</originalsourceid><addsrcrecordid>eNp9kE1v1DAQQC0EakvhFyAhH7lk668kDhIHtCq00iIOtGfLsSfFS-K0HqeIf4-3aXvsyeOZNx7PI-QDZxvOeHO230zgg90IJmTJCN20r8gJlw2vtBLy9XPM62PyFnHPGGuVYkfkWLZSad60J-Tu14_L3flnup0xVwgRQw73QKdlzKHKFv_QEWyKId7QYU40Lu5wpwg3E8Rsc5gjtdFTN1rEMAS3pv6G_JuGqbejjQ58QeK80viOvBnsiPD-8Twl19_Or7YX1e7n98vt113lZN3lSjFvW9l0queWg2q0Bia5hLYH3pVizTSzvhGDd1J0DKzmuvdcd14KwaWSp-TT-u5tmu8WwGymgA7G8iOYFzRCi06JWtddQeWKujQjJhjMbQqTTf8MZ-bg2uzNg2tzcG1W16Xr4-OApS_V554nuQX4sgJQ1rwPkAy6AAcfIYHLxs_hxQH_AQ1DkZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2829425859</pqid></control><display><type>article</type><title>SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Pan, Xipeng ; Cheng, Jijun ; Hou, Feihu ; Lan, Rushi ; Lu, Cheng ; Li, Lingqiao ; Feng, Zhengyun ; Wang, Huadeng ; Liang, Changhong ; Liu, Zhenbing ; Chen, Xin ; Han, Chu ; Liu, Zaiyi</creator><creatorcontrib>Pan, Xipeng ; Cheng, Jijun ; Hou, Feihu ; Lan, Rushi ; Lu, Cheng ; Li, Lingqiao ; Feng, Zhengyun ; Wang, Huadeng ; Liang, Changhong ; Liu, Zhenbing ; Chen, Xin ; Han, Chu ; Liu, Zaiyi</creatorcontrib><description>High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls. •We introduce a nuclear segmentation and classification framework with three branches of U-shape network.•Multi-task correlation attention (MTCA) mechanism is proposed to encourage the feature interaction and fusion across different tasks.•Cost-sensitive learning strategy is proposed to tackle serious imbalance of different cell types.•Coarse-to-fine marker-controlled watershed scheme is presented to alleviate the fragmentation of cells.•Extensive experiments demonstrate the proposed method achieves promising performance on two datasets.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.102867</identifier><identifier>PMID: 37348167</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Cell Nucleus ; Cost-sensitive ; Humans ; Image Processing, Computer-Assisted ; Imbalanced annotation ; Learning ; Multi-task correlation attention ; Nuclear segmentation and classification ; Precision Medicine ; Spine</subject><ispartof>Medical image analysis, 2023-08, Vol.88, p.102867-102867, Article 102867</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-40da73694b1a1e4688e0313e7be1940d5080ad62fdc3290ea818bd189d3221343</citedby><cites>FETCH-LOGICAL-c359t-40da73694b1a1e4688e0313e7be1940d5080ad62fdc3290ea818bd189d3221343</cites><orcidid>0000-0001-7352-5543 ; 0000-0001-9402-0421 ; 0000-0003-0966-5781 ; 0000-0001-7557-9131 ; 0000-0003-2581-0520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2023.102867$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37348167$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Cheng, Jijun</creatorcontrib><creatorcontrib>Hou, Feihu</creatorcontrib><creatorcontrib>Lan, Rushi</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><creatorcontrib>Feng, Zhengyun</creatorcontrib><creatorcontrib>Wang, Huadeng</creatorcontrib><creatorcontrib>Liang, Changhong</creatorcontrib><creatorcontrib>Liu, Zhenbing</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Han, Chu</creatorcontrib><creatorcontrib>Liu, Zaiyi</creatorcontrib><title>SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls. •We introduce a nuclear segmentation and classification framework with three branches of U-shape network.•Multi-task correlation attention (MTCA) mechanism is proposed to encourage the feature interaction and fusion across different tasks.•Cost-sensitive learning strategy is proposed to tackle serious imbalance of different cell types.•Coarse-to-fine marker-controlled watershed scheme is presented to alleviate the fragmentation of cells.•Extensive experiments demonstrate the proposed method achieves promising performance on two datasets.</description><subject>Algorithms</subject><subject>Cell Nucleus</subject><subject>Cost-sensitive</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Imbalanced annotation</subject><subject>Learning</subject><subject>Multi-task correlation attention</subject><subject>Nuclear segmentation and classification</subject><subject>Precision Medicine</subject><subject>Spine</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQQC0EakvhFyAhH7lk668kDhIHtCq00iIOtGfLsSfFS-K0HqeIf4-3aXvsyeOZNx7PI-QDZxvOeHO230zgg90IJmTJCN20r8gJlw2vtBLy9XPM62PyFnHPGGuVYkfkWLZSad60J-Tu14_L3flnup0xVwgRQw73QKdlzKHKFv_QEWyKId7QYU40Lu5wpwg3E8Rsc5gjtdFTN1rEMAS3pv6G_JuGqbejjQ58QeK80viOvBnsiPD-8Twl19_Or7YX1e7n98vt113lZN3lSjFvW9l0queWg2q0Bia5hLYH3pVizTSzvhGDd1J0DKzmuvdcd14KwaWSp-TT-u5tmu8WwGymgA7G8iOYFzRCi06JWtddQeWKujQjJhjMbQqTTf8MZ-bg2uzNg2tzcG1W16Xr4-OApS_V554nuQX4sgJQ1rwPkAy6AAcfIYHLxs_hxQH_AQ1DkZU</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Pan, Xipeng</creator><creator>Cheng, Jijun</creator><creator>Hou, Feihu</creator><creator>Lan, Rushi</creator><creator>Lu, Cheng</creator><creator>Li, Lingqiao</creator><creator>Feng, Zhengyun</creator><creator>Wang, Huadeng</creator><creator>Liang, Changhong</creator><creator>Liu, Zhenbing</creator><creator>Chen, Xin</creator><creator>Han, Chu</creator><creator>Liu, Zaiyi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7352-5543</orcidid><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-0966-5781</orcidid><orcidid>https://orcid.org/0000-0001-7557-9131</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid></search><sort><creationdate>202308</creationdate><title>SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations</title><author>Pan, Xipeng ; Cheng, Jijun ; Hou, Feihu ; Lan, Rushi ; Lu, Cheng ; Li, Lingqiao ; Feng, Zhengyun ; Wang, Huadeng ; Liang, Changhong ; Liu, Zhenbing ; Chen, Xin ; Han, Chu ; Liu, Zaiyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-40da73694b1a1e4688e0313e7be1940d5080ad62fdc3290ea818bd189d3221343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cell Nucleus</topic><topic>Cost-sensitive</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Imbalanced annotation</topic><topic>Learning</topic><topic>Multi-task correlation attention</topic><topic>Nuclear segmentation and classification</topic><topic>Precision Medicine</topic><topic>Spine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xipeng</creatorcontrib><creatorcontrib>Cheng, Jijun</creatorcontrib><creatorcontrib>Hou, Feihu</creatorcontrib><creatorcontrib>Lan, Rushi</creatorcontrib><creatorcontrib>Lu, Cheng</creatorcontrib><creatorcontrib>Li, Lingqiao</creatorcontrib><creatorcontrib>Feng, Zhengyun</creatorcontrib><creatorcontrib>Wang, Huadeng</creatorcontrib><creatorcontrib>Liang, Changhong</creatorcontrib><creatorcontrib>Liu, Zhenbing</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Han, Chu</creatorcontrib><creatorcontrib>Liu, Zaiyi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xipeng</au><au>Cheng, Jijun</au><au>Hou, Feihu</au><au>Lan, Rushi</au><au>Lu, Cheng</au><au>Li, Lingqiao</au><au>Feng, Zhengyun</au><au>Wang, Huadeng</au><au>Liang, Changhong</au><au>Liu, Zhenbing</au><au>Chen, Xin</au><au>Han, Chu</au><au>Liu, Zaiyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2023-08</date><risdate>2023</risdate><volume>88</volume><spage>102867</spage><epage>102867</epage><pages>102867-102867</pages><artnum>102867</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>High throughput nuclear segmentation and classification of whole slide images (WSIs) is crucial to biological analysis, clinical diagnosis and precision medicine. With the advances of CNN algorithms and the continuously growing datasets, considerable progress has been made in nuclear segmentation and classification. However, few works consider how to reasonably deal with nuclear heterogeneity in the following two aspects: imbalanced data distribution and diversified morphology characteristics. The minority classes might be dominated by the majority classes due to the imbalanced data distribution and the diversified morphology characteristics may lead to fragile segmentation results. In this study, a cost-Sensitive MultI-task LEarning (SMILE) framework is conducted to tackle the data heterogeneity problem. Based on the most popular multi-task learning backbone in nuclei segmentation and classification, we propose a multi-task correlation attention (MTCA) to perform feature interaction of multiple high relevant tasks to learn better feature representation. A cost-sensitive learning strategy is proposed to solve the imbalanced data distribution by increasing the penalization for the error classification of the minority classes. Furthermore, we propose a novel post-processing step based on the coarse-to-fine marker-controlled watershed scheme to alleviate fragile segmentation when nuclei are with large size and unclear contour. Extensive experiments show that the proposed method achieves state-of-the-art performances on CoNSeP and MoNuSAC 2020 datasets. The code is available at: https://github.com/panxipeng/nuclear_segandcls. •We introduce a nuclear segmentation and classification framework with three branches of U-shape network.•Multi-task correlation attention (MTCA) mechanism is proposed to encourage the feature interaction and fusion across different tasks.•Cost-sensitive learning strategy is proposed to tackle serious imbalance of different cell types.•Coarse-to-fine marker-controlled watershed scheme is presented to alleviate the fragmentation of cells.•Extensive experiments demonstrate the proposed method achieves promising performance on two datasets.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37348167</pmid><doi>10.1016/j.media.2023.102867</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7352-5543</orcidid><orcidid>https://orcid.org/0000-0001-9402-0421</orcidid><orcidid>https://orcid.org/0000-0003-0966-5781</orcidid><orcidid>https://orcid.org/0000-0001-7557-9131</orcidid><orcidid>https://orcid.org/0000-0003-2581-0520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2023-08, Vol.88, p.102867-102867, Article 102867
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2829425859
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Cell Nucleus
Cost-sensitive
Humans
Image Processing, Computer-Assisted
Imbalanced annotation
Learning
Multi-task correlation attention
Nuclear segmentation and classification
Precision Medicine
Spine
title SMILE: Cost-sensitive multi-task learning for nuclear segmentation and classification with imbalanced annotations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SMILE:%20Cost-sensitive%20multi-task%20learning%20for%20nuclear%20segmentation%20and%20classification%20with%20imbalanced%20annotations&rft.jtitle=Medical%20image%20analysis&rft.au=Pan,%20Xipeng&rft.date=2023-08&rft.volume=88&rft.spage=102867&rft.epage=102867&rft.pages=102867-102867&rft.artnum=102867&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.102867&rft_dat=%3Cproquest_cross%3E2829425859%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2829425859&rft_id=info:pmid/37348167&rft_els_id=S1361841523001275&rfr_iscdi=true