Fatou maps in n dynamics
We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are...
Gespeichert in:
Veröffentlicht in: | International journal of mathematics and mathematical sciences 2003-01, Vol.2003 (19), p.1233-1240 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1240 |
---|---|
container_issue | 19 |
container_start_page | 1233 |
container_title | International journal of mathematics and mathematical sciences |
container_volume | 2003 |
creator | Robertson, John W |
description | We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut. |
doi_str_mv | 10.1155/S0161171203208048 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28290197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28290197</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-c59fd6c67e6917f4ac906cd79de8150101df4eaa3442fdfab096246bd3c5cf123</originalsourceid><addsrcrecordid>eNotjLtKA0EUQIegkDWmj91WdqP33nmXEkwUAhZqHSbzgJV96ewW_r0GrU5xDoexG4Q7RKXuXwE1okECQWBB2gWrUFvDQZK6YNVZ87NfsqtSPgDQEqmKbXZ-Gua682Opm77u6_jd-64J5ZpdZt-WtP7nir3vHt-2T_zwsn_ePhz4iIATD8rlqIM2STs0WfrgQIdoXEwWFfw2McvkvZCScsz-BE6T1KcoggoZSazY7d93_Bo-51SmY9eUkNrW92mYy5EsOUBnxA_zoT4W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28290197</pqid></control><display><type>article</type><title>Fatou maps in n dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Robertson, John W</creator><creatorcontrib>Robertson, John W</creatorcontrib><description>We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S0161171203208048</identifier><language>eng</language><ispartof>International journal of mathematics and mathematical sciences, 2003-01, Vol.2003 (19), p.1233-1240</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Robertson, John W</creatorcontrib><title>Fatou maps in n dynamics</title><title>International journal of mathematics and mathematical sciences</title><description>We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjLtKA0EUQIegkDWmj91WdqP33nmXEkwUAhZqHSbzgJV96ewW_r0GrU5xDoexG4Q7RKXuXwE1okECQWBB2gWrUFvDQZK6YNVZ87NfsqtSPgDQEqmKbXZ-Gua682Opm77u6_jd-64J5ZpdZt-WtP7nir3vHt-2T_zwsn_ePhz4iIATD8rlqIM2STs0WfrgQIdoXEwWFfw2McvkvZCScsz-BE6T1KcoggoZSazY7d93_Bo-51SmY9eUkNrW92mYy5EsOUBnxA_zoT4W</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Robertson, John W</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030101</creationdate><title>Fatou maps in n dynamics</title><author>Robertson, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-c59fd6c67e6917f4ac906cd79de8150101df4eaa3442fdfab096246bd3c5cf123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, John W</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatou maps in n dynamics</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>2003</volume><issue>19</issue><spage>1233</spage><epage>1240</epage><pages>1233-1240</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</abstract><doi>10.1155/S0161171203208048</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0161-1712 |
ispartof | International journal of mathematics and mathematical sciences, 2003-01, Vol.2003 (19), p.1233-1240 |
issn | 0161-1712 1687-0425 |
language | eng |
recordid | cdi_proquest_miscellaneous_28290197 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
title | Fatou maps in n dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatou%20maps%20in%20n%20dynamics&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Robertson,%20John%20W&rft.date=2003-01-01&rft.volume=2003&rft.issue=19&rft.spage=1233&rft.epage=1240&rft.pages=1233-1240&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S0161171203208048&rft_dat=%3Cproquest%3E28290197%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28290197&rft_id=info:pmid/&rfr_iscdi=true |