Fatou maps in n dynamics

We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mathematics and mathematical sciences 2003-01, Vol.2003 (19), p.1233-1240
1. Verfasser: Robertson, John W
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1240
container_issue 19
container_start_page 1233
container_title International journal of mathematics and mathematical sciences
container_volume 2003
creator Robertson, John W
description We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.
doi_str_mv 10.1155/S0161171203208048
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28290197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28290197</sourcerecordid><originalsourceid>FETCH-LOGICAL-p101t-c59fd6c67e6917f4ac906cd79de8150101df4eaa3442fdfab096246bd3c5cf123</originalsourceid><addsrcrecordid>eNotjLtKA0EUQIegkDWmj91WdqP33nmXEkwUAhZqHSbzgJV96ewW_r0GrU5xDoexG4Q7RKXuXwE1okECQWBB2gWrUFvDQZK6YNVZ87NfsqtSPgDQEqmKbXZ-Gua682Opm77u6_jd-64J5ZpdZt-WtP7nir3vHt-2T_zwsn_ePhz4iIATD8rlqIM2STs0WfrgQIdoXEwWFfw2McvkvZCScsz-BE6T1KcoggoZSazY7d93_Bo-51SmY9eUkNrW92mYy5EsOUBnxA_zoT4W</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28290197</pqid></control><display><type>article</type><title>Fatou maps in n dynamics</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Robertson, John W</creator><creatorcontrib>Robertson, John W</creatorcontrib><description>We study the dynamics of a holomorphic self-map f of complex projective space of degree d &gt; 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</description><identifier>ISSN: 0161-1712</identifier><identifier>EISSN: 1687-0425</identifier><identifier>DOI: 10.1155/S0161171203208048</identifier><language>eng</language><ispartof>International journal of mathematics and mathematical sciences, 2003-01, Vol.2003 (19), p.1233-1240</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Robertson, John W</creatorcontrib><title>Fatou maps in n dynamics</title><title>International journal of mathematics and mathematical sciences</title><description>We study the dynamics of a holomorphic self-map f of complex projective space of degree d &gt; 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</description><issn>0161-1712</issn><issn>1687-0425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNotjLtKA0EUQIegkDWmj91WdqP33nmXEkwUAhZqHSbzgJV96ewW_r0GrU5xDoexG4Q7RKXuXwE1okECQWBB2gWrUFvDQZK6YNVZ87NfsqtSPgDQEqmKbXZ-Gua682Opm77u6_jd-64J5ZpdZt-WtP7nir3vHt-2T_zwsn_ePhz4iIATD8rlqIM2STs0WfrgQIdoXEwWFfw2McvkvZCScsz-BE6T1KcoggoZSazY7d93_Bo-51SmY9eUkNrW92mYy5EsOUBnxA_zoT4W</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Robertson, John W</creator><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20030101</creationdate><title>Fatou maps in n dynamics</title><author>Robertson, John W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p101t-c59fd6c67e6917f4ac906cd79de8150101df4eaa3442fdfab096246bd3c5cf123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robertson, John W</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of mathematics and mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robertson, John W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatou maps in n dynamics</atitle><jtitle>International journal of mathematics and mathematical sciences</jtitle><date>2003-01-01</date><risdate>2003</risdate><volume>2003</volume><issue>19</issue><spage>1233</spage><epage>1240</epage><pages>1233-1240</pages><issn>0161-1712</issn><eissn>1687-0425</eissn><abstract>We study the dynamics of a holomorphic self-map f of complex projective space of degree d &gt; 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that global stable manifolds of hyperbolic fixed points are given by Fatou maps. We further show that they are necessarily Kobayashi hyperbolic and are always ramified by f (and therefore any hyperbolic periodic point attracts a point of the critical set of f). We also show that Fatou components are hyperbolically embedded in n and that a Fatou component which is attracted to a taut subset of itself is necessarily taut.</abstract><doi>10.1155/S0161171203208048</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0161-1712
ispartof International journal of mathematics and mathematical sciences, 2003-01, Vol.2003 (19), p.1233-1240
issn 0161-1712
1687-0425
language eng
recordid cdi_proquest_miscellaneous_28290197
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
title Fatou maps in n dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A27%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatou%20maps%20in%20n%20dynamics&rft.jtitle=International%20journal%20of%20mathematics%20and%20mathematical%20sciences&rft.au=Robertson,%20John%20W&rft.date=2003-01-01&rft.volume=2003&rft.issue=19&rft.spage=1233&rft.epage=1240&rft.pages=1233-1240&rft.issn=0161-1712&rft.eissn=1687-0425&rft_id=info:doi/10.1155/S0161171203208048&rft_dat=%3Cproquest%3E28290197%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28290197&rft_id=info:pmid/&rfr_iscdi=true