Integral equation methods for Stokes flow in doubly-periodic domains

A fast integral-equation technique is presented for the calculation of Stokes flow in doubly-periodic domains. While existing integral formulations typically rely on a Fourier series to compute the governing Greens' function, here a method of images is developed which is faster, more flexible,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of engineering mathematics 2004-02, Vol.48 (2), p.157-170
Hauptverfasser: GREENGARD, Leslie, KROPINSKI, Mary Catherine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 2
container_start_page 157
container_title Journal of engineering mathematics
container_volume 48
creator GREENGARD, Leslie
KROPINSKI, Mary Catherine
description A fast integral-equation technique is presented for the calculation of Stokes flow in doubly-periodic domains. While existing integral formulations typically rely on a Fourier series to compute the governing Greens' function, here a method of images is developed which is faster, more flexible, and easily incorporated into the fast multipole method. Accurate solutions can be obtained with obstacles of arbitrary shape at a cost roughly proportional to the number of points needed to resolve the interface. The performance of the method is illustrated with several numerical examples.
doi_str_mv 10.1023/b:engi.0000011923.59797.92
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28288261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28288261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2b47992be09c4c114df59ad84bf225d58c447824e8fb42011ed1f24a795bda883</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKf_oQj61prcpDbZm845B0Mf1OeQpsmMts2WtMj-vZ0b7L7cc-HwXc5B6JrgjGCgd-XEtCuX4d0QIoBmuShEkQk4QSOSFzSFAtNTNMIYIMWc0nN0EeP3YBecwQg9LdrOrIKqE7PpVed8mzSm-_JVTKwPyXvnf8wga_-buDapfF_W23RtgvOV08PdKNfGS3RmVR3N1WGP0efz7GP6ki7f5ovpwzLVlPMuhZIVQkBpsNBME8IqmwtVcVZagLzKuWas4MAMtyWDIY-piAWmCpGXleKcjtHtnrsOftOb2MnGRW3qWrXG91ECB87hngzGyd6og48xGCvXwTUqbCXBclecfJSz1_lCHouT_8XJQY3RzeGLilrVNqhWu3gk5IwNCE7_AKYhb20</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28288261</pqid></control><display><type>article</type><title>Integral equation methods for Stokes flow in doubly-periodic domains</title><source>SpringerLink Journals - AutoHoldings</source><creator>GREENGARD, Leslie ; KROPINSKI, Mary Catherine</creator><creatorcontrib>GREENGARD, Leslie ; KROPINSKI, Mary Catherine</creatorcontrib><description>A fast integral-equation technique is presented for the calculation of Stokes flow in doubly-periodic domains. While existing integral formulations typically rely on a Fourier series to compute the governing Greens' function, here a method of images is developed which is faster, more flexible, and easily incorporated into the fast multipole method. Accurate solutions can be obtained with obstacles of arbitrary shape at a cost roughly proportional to the number of points needed to resolve the interface. The performance of the method is illustrated with several numerical examples.</description><identifier>ISSN: 0022-0833</identifier><identifier>EISSN: 1573-2703</identifier><identifier>DOI: 10.1023/b:engi.0000011923.59797.92</identifier><identifier>CODEN: JLEMAU</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Laminar flows ; Low-reynolds-number (creeping) flows ; Nonhomogeneous flows ; Physics</subject><ispartof>Journal of engineering mathematics, 2004-02, Vol.48 (2), p.157-170</ispartof><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-2b47992be09c4c114df59ad84bf225d58c447824e8fb42011ed1f24a795bda883</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15441028$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GREENGARD, Leslie</creatorcontrib><creatorcontrib>KROPINSKI, Mary Catherine</creatorcontrib><title>Integral equation methods for Stokes flow in doubly-periodic domains</title><title>Journal of engineering mathematics</title><description>A fast integral-equation technique is presented for the calculation of Stokes flow in doubly-periodic domains. While existing integral formulations typically rely on a Fourier series to compute the governing Greens' function, here a method of images is developed which is faster, more flexible, and easily incorporated into the fast multipole method. Accurate solutions can be obtained with obstacles of arbitrary shape at a cost roughly proportional to the number of points needed to resolve the interface. The performance of the method is illustrated with several numerical examples.</description><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Laminar flows</subject><subject>Low-reynolds-number (creeping) flows</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><issn>0022-0833</issn><issn>1573-2703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNpFkFFLwzAUhYMoOKf_oQj61prcpDbZm845B0Mf1OeQpsmMts2WtMj-vZ0b7L7cc-HwXc5B6JrgjGCgd-XEtCuX4d0QIoBmuShEkQk4QSOSFzSFAtNTNMIYIMWc0nN0EeP3YBecwQg9LdrOrIKqE7PpVed8mzSm-_JVTKwPyXvnf8wga_-buDapfF_W23RtgvOV08PdKNfGS3RmVR3N1WGP0efz7GP6ki7f5ovpwzLVlPMuhZIVQkBpsNBME8IqmwtVcVZagLzKuWas4MAMtyWDIY-piAWmCpGXleKcjtHtnrsOftOb2MnGRW3qWrXG91ECB87hngzGyd6og48xGCvXwTUqbCXBclecfJSz1_lCHouT_8XJQY3RzeGLilrVNqhWu3gk5IwNCE7_AKYhb20</recordid><startdate>20040201</startdate><enddate>20040201</enddate><creator>GREENGARD, Leslie</creator><creator>KROPINSKI, Mary Catherine</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040201</creationdate><title>Integral equation methods for Stokes flow in doubly-periodic domains</title><author>GREENGARD, Leslie ; KROPINSKI, Mary Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2b47992be09c4c114df59ad84bf225d58c447824e8fb42011ed1f24a795bda883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Laminar flows</topic><topic>Low-reynolds-number (creeping) flows</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GREENGARD, Leslie</creatorcontrib><creatorcontrib>KROPINSKI, Mary Catherine</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GREENGARD, Leslie</au><au>KROPINSKI, Mary Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integral equation methods for Stokes flow in doubly-periodic domains</atitle><jtitle>Journal of engineering mathematics</jtitle><date>2004-02-01</date><risdate>2004</risdate><volume>48</volume><issue>2</issue><spage>157</spage><epage>170</epage><pages>157-170</pages><issn>0022-0833</issn><eissn>1573-2703</eissn><coden>JLEMAU</coden><abstract>A fast integral-equation technique is presented for the calculation of Stokes flow in doubly-periodic domains. While existing integral formulations typically rely on a Fourier series to compute the governing Greens' function, here a method of images is developed which is faster, more flexible, and easily incorporated into the fast multipole method. Accurate solutions can be obtained with obstacles of arbitrary shape at a cost roughly proportional to the number of points needed to resolve the interface. The performance of the method is illustrated with several numerical examples.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1023/b:engi.0000011923.59797.92</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-0833
ispartof Journal of engineering mathematics, 2004-02, Vol.48 (2), p.157-170
issn 0022-0833
1573-2703
language eng
recordid cdi_proquest_miscellaneous_28288261
source SpringerLink Journals - AutoHoldings
subjects Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Laminar flows
Low-reynolds-number (creeping) flows
Nonhomogeneous flows
Physics
title Integral equation methods for Stokes flow in doubly-periodic domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integral%20equation%20methods%20for%20Stokes%20flow%20in%20doubly-periodic%20domains&rft.jtitle=Journal%20of%20engineering%20mathematics&rft.au=GREENGARD,%20Leslie&rft.date=2004-02-01&rft.volume=48&rft.issue=2&rft.spage=157&rft.epage=170&rft.pages=157-170&rft.issn=0022-0833&rft.eissn=1573-2703&rft.coden=JLEMAU&rft_id=info:doi/10.1023/b:engi.0000011923.59797.92&rft_dat=%3Cproquest_cross%3E28288261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28288261&rft_id=info:pmid/&rfr_iscdi=true