Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine

Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID‐19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical virology 2023-06, Vol.95 (6), p.e28884-n/a
Hauptverfasser: Watanabe, Yoshiyuki, Yamamoto, Hiroyuki, Matsuba, Ikuro, Watanabe, Karin, Kunishima, Tomoyuki, Takechi, Yukako, Takuma, Tetsuo, Araki, Yasushi, Hirotsu, Nobuo, Sakai, Hiroyuki, Oikawa, Ritsuko, Danno, Hiroki, Fukuda, Masakazu, Sugino, Ryuichi, Futagami, Seiji, Wada, Kota, Itoh, Fumio, Tateishi, Keisuke, Oda, Ichiro, Hatori, Yutaka, Degawa, Hisakazu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page e28884
container_title Journal of medical virology
container_volume 95
creator Watanabe, Yoshiyuki
Yamamoto, Hiroyuki
Matsuba, Ikuro
Watanabe, Karin
Kunishima, Tomoyuki
Takechi, Yukako
Takuma, Tetsuo
Araki, Yasushi
Hirotsu, Nobuo
Sakai, Hiroyuki
Oikawa, Ritsuko
Danno, Hiroki
Fukuda, Masakazu
Sugino, Ryuichi
Futagami, Seiji
Wada, Kota
Itoh, Fumio
Tateishi, Keisuke
Oda, Ichiro
Hatori, Yutaka
Degawa, Hisakazu
description Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID‐19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time‐series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1–T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High‐throughput and temporal bulk RNA‐based transcriptome analysis is a useful approach for inclusive, diverse, and cost‐effective large‐scale clinical studies.
doi_str_mv 10.1002/jmv.28884
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828774866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828774866</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3534-8c667edda63bcc1809c9807bb96e30768a991bbd93e881951c34856e6f17becc3</originalsourceid><addsrcrecordid>eNp10U9PHCEYBnDS1OhqPfQLNCS96GEUhlkGjpuNf2q0TdR6nQDzTpbNMExhZs3e_Aj6Ff0kZV3bQ5Ne4MDvfQg8CH2m5IQSkp8u3eokF0IUH9CEEskzSUr6EU0ILXjGOZ3uof0Yl4QQIfN8F-2xkhVpgE_Qy7118Pr0HCFYiHgIqosm2H7wDrDqVLuONmLf4D6BfgFBtVi33tfY-c53o2lBBWygbZPSg7Id1LgJ3mHb1XZl61Glk8eFxwEM2FU6HRaA72a3d-nWuX9Ia47d7fcZXilj0vgntNOkGTh83w_Qz_Oz-_lldv3j4tt8dp0ZNmVFJgznJdS14kwbQwWRRgpSai05MFJyoaSkWteSgRBUTqlhhZhy4A0tNRjDDtDRNrcP_tcIcaicjZuHqA78GKtc5KIsC8F5ol__oUs_hvQ5G8UopUXOWFLHW2WCjzFAU_XBOhXWFSXVpqcq9VS99ZTsl_fEUTuo_8o_xSRwugWPtoX1_5Oqq5uHbeRv0cGhGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2831114233</pqid></control><display><type>article</type><title>Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Watanabe, Yoshiyuki ; Yamamoto, Hiroyuki ; Matsuba, Ikuro ; Watanabe, Karin ; Kunishima, Tomoyuki ; Takechi, Yukako ; Takuma, Tetsuo ; Araki, Yasushi ; Hirotsu, Nobuo ; Sakai, Hiroyuki ; Oikawa, Ritsuko ; Danno, Hiroki ; Fukuda, Masakazu ; Sugino, Ryuichi ; Futagami, Seiji ; Wada, Kota ; Itoh, Fumio ; Tateishi, Keisuke ; Oda, Ichiro ; Hatori, Yutaka ; Degawa, Hisakazu</creator><creatorcontrib>Watanabe, Yoshiyuki ; Yamamoto, Hiroyuki ; Matsuba, Ikuro ; Watanabe, Karin ; Kunishima, Tomoyuki ; Takechi, Yukako ; Takuma, Tetsuo ; Araki, Yasushi ; Hirotsu, Nobuo ; Sakai, Hiroyuki ; Oikawa, Ritsuko ; Danno, Hiroki ; Fukuda, Masakazu ; Sugino, Ryuichi ; Futagami, Seiji ; Wada, Kota ; Itoh, Fumio ; Tateishi, Keisuke ; Oda, Ichiro ; Hatori, Yutaka ; Degawa, Hisakazu</creatorcontrib><description>Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID‐19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time‐series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1–T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High‐throughput and temporal bulk RNA‐based transcriptome analysis is a useful approach for inclusive, diverse, and cost‐effective large‐scale clinical studies.</description><identifier>ISSN: 0146-6615</identifier><identifier>EISSN: 1096-9071</identifier><identifier>DOI: 10.1002/jmv.28884</identifier><identifier>PMID: 37342886</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Antibodies, Viral ; Bioinformatics ; Blood ; BNT162 Vaccine ; bulk RNA‐based transcriptome analysis ; Coronaviruses ; Cost analysis ; COVID-19 ; COVID-19 - prevention &amp; control ; COVID-19 Vaccines ; Gene expression ; Gene Expression Profiling ; Genes ; Heterogeneity ; Humans ; Immune system ; Leukocytes, Mononuclear ; Medical personnel ; Molecular modelling ; mRNA vaccination ; mRNA Vaccines ; PBMC ; Peripheral blood mononuclear cells ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; SARS-CoV-2 - genetics ; Severe acute respiratory syndrome coronavirus 2 ; Transcriptome ; Transcriptomes ; UMAP ; Vaccination ; Vaccines ; Viral diseases ; Virology</subject><ispartof>Journal of medical virology, 2023-06, Vol.95 (6), p.e28884-n/a</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3534-8c667edda63bcc1809c9807bb96e30768a991bbd93e881951c34856e6f17becc3</citedby><cites>FETCH-LOGICAL-c3534-8c667edda63bcc1809c9807bb96e30768a991bbd93e881951c34856e6f17becc3</cites><orcidid>0000-0001-9037-3596 ; 0000-0002-0954-6806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmv.28884$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmv.28884$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37342886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watanabe, Yoshiyuki</creatorcontrib><creatorcontrib>Yamamoto, Hiroyuki</creatorcontrib><creatorcontrib>Matsuba, Ikuro</creatorcontrib><creatorcontrib>Watanabe, Karin</creatorcontrib><creatorcontrib>Kunishima, Tomoyuki</creatorcontrib><creatorcontrib>Takechi, Yukako</creatorcontrib><creatorcontrib>Takuma, Tetsuo</creatorcontrib><creatorcontrib>Araki, Yasushi</creatorcontrib><creatorcontrib>Hirotsu, Nobuo</creatorcontrib><creatorcontrib>Sakai, Hiroyuki</creatorcontrib><creatorcontrib>Oikawa, Ritsuko</creatorcontrib><creatorcontrib>Danno, Hiroki</creatorcontrib><creatorcontrib>Fukuda, Masakazu</creatorcontrib><creatorcontrib>Sugino, Ryuichi</creatorcontrib><creatorcontrib>Futagami, Seiji</creatorcontrib><creatorcontrib>Wada, Kota</creatorcontrib><creatorcontrib>Itoh, Fumio</creatorcontrib><creatorcontrib>Tateishi, Keisuke</creatorcontrib><creatorcontrib>Oda, Ichiro</creatorcontrib><creatorcontrib>Hatori, Yutaka</creatorcontrib><creatorcontrib>Degawa, Hisakazu</creatorcontrib><title>Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine</title><title>Journal of medical virology</title><addtitle>J Med Virol</addtitle><description>Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID‐19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time‐series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1–T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High‐throughput and temporal bulk RNA‐based transcriptome analysis is a useful approach for inclusive, diverse, and cost‐effective large‐scale clinical studies.</description><subject>Antibodies, Viral</subject><subject>Bioinformatics</subject><subject>Blood</subject><subject>BNT162 Vaccine</subject><subject>bulk RNA‐based transcriptome analysis</subject><subject>Coronaviruses</subject><subject>Cost analysis</subject><subject>COVID-19</subject><subject>COVID-19 - prevention &amp; control</subject><subject>COVID-19 Vaccines</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Genes</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Immune system</subject><subject>Leukocytes, Mononuclear</subject><subject>Medical personnel</subject><subject>Molecular modelling</subject><subject>mRNA vaccination</subject><subject>mRNA Vaccines</subject><subject>PBMC</subject><subject>Peripheral blood mononuclear cells</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>SARS-CoV-2 - genetics</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>UMAP</subject><subject>Vaccination</subject><subject>Vaccines</subject><subject>Viral diseases</subject><subject>Virology</subject><issn>0146-6615</issn><issn>1096-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10U9PHCEYBnDS1OhqPfQLNCS96GEUhlkGjpuNf2q0TdR6nQDzTpbNMExhZs3e_Aj6Ff0kZV3bQ5Ne4MDvfQg8CH2m5IQSkp8u3eokF0IUH9CEEskzSUr6EU0ILXjGOZ3uof0Yl4QQIfN8F-2xkhVpgE_Qy7118Pr0HCFYiHgIqosm2H7wDrDqVLuONmLf4D6BfgFBtVi33tfY-c53o2lBBWygbZPSg7Id1LgJ3mHb1XZl61Glk8eFxwEM2FU6HRaA72a3d-nWuX9Ia47d7fcZXilj0vgntNOkGTh83w_Qz_Oz-_lldv3j4tt8dp0ZNmVFJgznJdS14kwbQwWRRgpSai05MFJyoaSkWteSgRBUTqlhhZhy4A0tNRjDDtDRNrcP_tcIcaicjZuHqA78GKtc5KIsC8F5ol__oUs_hvQ5G8UopUXOWFLHW2WCjzFAU_XBOhXWFSXVpqcq9VS99ZTsl_fEUTuo_8o_xSRwugWPtoX1_5Oqq5uHbeRv0cGhGA</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Watanabe, Yoshiyuki</creator><creator>Yamamoto, Hiroyuki</creator><creator>Matsuba, Ikuro</creator><creator>Watanabe, Karin</creator><creator>Kunishima, Tomoyuki</creator><creator>Takechi, Yukako</creator><creator>Takuma, Tetsuo</creator><creator>Araki, Yasushi</creator><creator>Hirotsu, Nobuo</creator><creator>Sakai, Hiroyuki</creator><creator>Oikawa, Ritsuko</creator><creator>Danno, Hiroki</creator><creator>Fukuda, Masakazu</creator><creator>Sugino, Ryuichi</creator><creator>Futagami, Seiji</creator><creator>Wada, Kota</creator><creator>Itoh, Fumio</creator><creator>Tateishi, Keisuke</creator><creator>Oda, Ichiro</creator><creator>Hatori, Yutaka</creator><creator>Degawa, Hisakazu</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9037-3596</orcidid><orcidid>https://orcid.org/0000-0002-0954-6806</orcidid></search><sort><creationdate>202306</creationdate><title>Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine</title><author>Watanabe, Yoshiyuki ; Yamamoto, Hiroyuki ; Matsuba, Ikuro ; Watanabe, Karin ; Kunishima, Tomoyuki ; Takechi, Yukako ; Takuma, Tetsuo ; Araki, Yasushi ; Hirotsu, Nobuo ; Sakai, Hiroyuki ; Oikawa, Ritsuko ; Danno, Hiroki ; Fukuda, Masakazu ; Sugino, Ryuichi ; Futagami, Seiji ; Wada, Kota ; Itoh, Fumio ; Tateishi, Keisuke ; Oda, Ichiro ; Hatori, Yutaka ; Degawa, Hisakazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3534-8c667edda63bcc1809c9807bb96e30768a991bbd93e881951c34856e6f17becc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antibodies, Viral</topic><topic>Bioinformatics</topic><topic>Blood</topic><topic>BNT162 Vaccine</topic><topic>bulk RNA‐based transcriptome analysis</topic><topic>Coronaviruses</topic><topic>Cost analysis</topic><topic>COVID-19</topic><topic>COVID-19 - prevention &amp; control</topic><topic>COVID-19 Vaccines</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Genes</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Immune system</topic><topic>Leukocytes, Mononuclear</topic><topic>Medical personnel</topic><topic>Molecular modelling</topic><topic>mRNA vaccination</topic><topic>mRNA Vaccines</topic><topic>PBMC</topic><topic>Peripheral blood mononuclear cells</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>SARS-CoV-2 - genetics</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>UMAP</topic><topic>Vaccination</topic><topic>Vaccines</topic><topic>Viral diseases</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watanabe, Yoshiyuki</creatorcontrib><creatorcontrib>Yamamoto, Hiroyuki</creatorcontrib><creatorcontrib>Matsuba, Ikuro</creatorcontrib><creatorcontrib>Watanabe, Karin</creatorcontrib><creatorcontrib>Kunishima, Tomoyuki</creatorcontrib><creatorcontrib>Takechi, Yukako</creatorcontrib><creatorcontrib>Takuma, Tetsuo</creatorcontrib><creatorcontrib>Araki, Yasushi</creatorcontrib><creatorcontrib>Hirotsu, Nobuo</creatorcontrib><creatorcontrib>Sakai, Hiroyuki</creatorcontrib><creatorcontrib>Oikawa, Ritsuko</creatorcontrib><creatorcontrib>Danno, Hiroki</creatorcontrib><creatorcontrib>Fukuda, Masakazu</creatorcontrib><creatorcontrib>Sugino, Ryuichi</creatorcontrib><creatorcontrib>Futagami, Seiji</creatorcontrib><creatorcontrib>Wada, Kota</creatorcontrib><creatorcontrib>Itoh, Fumio</creatorcontrib><creatorcontrib>Tateishi, Keisuke</creatorcontrib><creatorcontrib>Oda, Ichiro</creatorcontrib><creatorcontrib>Hatori, Yutaka</creatorcontrib><creatorcontrib>Degawa, Hisakazu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical virology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watanabe, Yoshiyuki</au><au>Yamamoto, Hiroyuki</au><au>Matsuba, Ikuro</au><au>Watanabe, Karin</au><au>Kunishima, Tomoyuki</au><au>Takechi, Yukako</au><au>Takuma, Tetsuo</au><au>Araki, Yasushi</au><au>Hirotsu, Nobuo</au><au>Sakai, Hiroyuki</au><au>Oikawa, Ritsuko</au><au>Danno, Hiroki</au><au>Fukuda, Masakazu</au><au>Sugino, Ryuichi</au><au>Futagami, Seiji</au><au>Wada, Kota</au><au>Itoh, Fumio</au><au>Tateishi, Keisuke</au><au>Oda, Ichiro</au><au>Hatori, Yutaka</au><au>Degawa, Hisakazu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine</atitle><jtitle>Journal of medical virology</jtitle><addtitle>J Med Virol</addtitle><date>2023-06</date><risdate>2023</risdate><volume>95</volume><issue>6</issue><spage>e28884</spage><epage>n/a</epage><pages>e28884-n/a</pages><issn>0146-6615</issn><eissn>1096-9071</eissn><abstract>Messenger ribonucleic acid (mRNA) vaccination against coronavirus disease 2019 (COVID‐19) is an effective prevention strategy, despite a limited understanding of the molecular mechanisms underlying the host immune system and individual heterogeneity of the variable effects of mRNA vaccination. We assessed the time‐series changes in the comprehensive gene expression profiles of 200 vaccinated healthcare workers by performing bulk transcriptome and bioinformatics analyses, including dimensionality reduction utilizing the uniform manifold approximation and projection (UMAP) technique. For these analyses, blood samples, including peripheral blood mononuclear cells (PBMCs), were collected from 214 vaccine recipients before vaccination (T1) and on Days 22 (T2, after second dose), 90, 180 (T3, before a booster dose), and 360 (T4, after a booster dose) after receiving the first dose of BNT162b2 vaccine (UMIN000043851). UMAP successfully visualized the main cluster of gene expression at each time point in PBMC samples (T1–T4). Through differentially expressed gene (DEG) analysis, we identified genes that showed fluctuating expression levels and gradual increases in expression levels from T1 to T4, as well as genes with increased expression levels at T4 alone. We also succeeded in dividing these cases into five types based on the changes in gene expression levels. High‐throughput and temporal bulk RNA‐based transcriptome analysis is a useful approach for inclusive, diverse, and cost‐effective large‐scale clinical studies.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37342886</pmid><doi>10.1002/jmv.28884</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-9037-3596</orcidid><orcidid>https://orcid.org/0000-0002-0954-6806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0146-6615
ispartof Journal of medical virology, 2023-06, Vol.95 (6), p.e28884-n/a
issn 0146-6615
1096-9071
language eng
recordid cdi_proquest_miscellaneous_2828774866
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Antibodies, Viral
Bioinformatics
Blood
BNT162 Vaccine
bulk RNA‐based transcriptome analysis
Coronaviruses
Cost analysis
COVID-19
COVID-19 - prevention & control
COVID-19 Vaccines
Gene expression
Gene Expression Profiling
Genes
Heterogeneity
Humans
Immune system
Leukocytes, Mononuclear
Medical personnel
Molecular modelling
mRNA vaccination
mRNA Vaccines
PBMC
Peripheral blood mononuclear cells
Ribonucleic acid
RNA
RNA, Messenger - genetics
SARS-CoV-2 - genetics
Severe acute respiratory syndrome coronavirus 2
Transcriptome
Transcriptomes
UMAP
Vaccination
Vaccines
Viral diseases
Virology
title Time‐series transcriptome analysis of peripheral blood mononuclear cells obtained from individuals who received the SARS‐CoV‐2 mRNA vaccine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A59%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%E2%80%90series%20transcriptome%20analysis%20of%20peripheral%20blood%20mononuclear%20cells%20obtained%20from%20individuals%20who%20received%20the%20SARS%E2%80%90CoV%E2%80%902%20mRNA%20vaccine&rft.jtitle=Journal%20of%20medical%20virology&rft.au=Watanabe,%20Yoshiyuki&rft.date=2023-06&rft.volume=95&rft.issue=6&rft.spage=e28884&rft.epage=n/a&rft.pages=e28884-n/a&rft.issn=0146-6615&rft.eissn=1096-9071&rft_id=info:doi/10.1002/jmv.28884&rft_dat=%3Cproquest_cross%3E2828774866%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2831114233&rft_id=info:pmid/37342886&rfr_iscdi=true