A survey on deep learning for skin lesion segmentation

Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2023-08, Vol.88, p.102863-102863, Article 102863
Hauptverfasser: Mirikharaji, Zahra, Abhishek, Kumar, Bissoto, Alceu, Barata, Catarina, Avila, Sandra, Valle, Eduardo, Celebi, M. Emre, Hamarneh, Ghassan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102863
container_issue
container_start_page 102863
container_title Medical image analysis
container_volume 88
creator Mirikharaji, Zahra
Abhishek, Kumar
Bissoto, Alceu
Barata, Catarina
Avila, Sandra
Valle, Eduardo
Celebi, M. Emre
Hamarneh, Ghassan
description Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online33https://github.com/sfu-mial/skin-lesion-segmentation-survey.. [Display omitted] •A comprehensive review of 177 research papers from 2014 to 2022.•All studies are analyzed based on input data, model design, and evaluation aspects.•We discuss current trends, their limitations, and potential future directions.
doi_str_mv 10.1016/j.media.2023.102863
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828774101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841523001238</els_id><sourcerecordid>2828774101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d62b433e306dd9056b1b1b7665de4dfeec4edcf141de3aa9699a5aad0493eed93</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYpfsVJFiyqipdUiQ2sLceeVC6JU-ykUv8el5Qu0Sw8jztz5YPQLcFzgol42MxbMFbNKaYsdmgh2BmaEiZIWnDKzk85ySboKoQNxjjnHF-iCcsZZ4yyKRKLJAx-B_ukc4kB2CYNKO-sWyd155PwZV3sBBunAdYtuF71sbhGF7VqAtwc3xn6fH76WL6mq_eXt-VilWqOeZ8aQatoBAwLY0qciYrEyIXIDHBTA2gORteEEwNMqVKUpcqUMpiXDMCUbIbux7tb330PEHrZ2qChaZSDbgiSFrTIcx55RCkbpdp3IXio5dbbVvm9JFgegMmN_AUmD8DkCCxu3R0NhipOTzt_hKLgcRRA_ObOgpdBW3A6XvKge2k6-6_BD3UUfKo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828774101</pqid></control><display><type>article</type><title>A survey on deep learning for skin lesion segmentation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Mirikharaji, Zahra ; Abhishek, Kumar ; Bissoto, Alceu ; Barata, Catarina ; Avila, Sandra ; Valle, Eduardo ; Celebi, M. Emre ; Hamarneh, Ghassan</creator><creatorcontrib>Mirikharaji, Zahra ; Abhishek, Kumar ; Bissoto, Alceu ; Barata, Catarina ; Avila, Sandra ; Valle, Eduardo ; Celebi, M. Emre ; Hamarneh, Ghassan</creatorcontrib><description>Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online33https://github.com/sfu-mial/skin-lesion-segmentation-survey.. [Display omitted] •A comprehensive review of 177 research papers from 2014 to 2022.•All studies are analyzed based on input data, model design, and evaluation aspects.•We discuss current trends, their limitations, and potential future directions.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2023.102863</identifier><identifier>PMID: 37343323</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Deep learning ; Segmentation ; Skin lesion ; Survey</subject><ispartof>Medical image analysis, 2023-08, Vol.88, p.102863-102863, Article 102863</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d62b433e306dd9056b1b1b7665de4dfeec4edcf141de3aa9699a5aad0493eed93</citedby><cites>FETCH-LOGICAL-c404t-d62b433e306dd9056b1b1b7665de4dfeec4edcf141de3aa9699a5aad0493eed93</cites><orcidid>0000-0003-2293-6160 ; 0000-0001-5040-7448 ; 0000-0001-7805-3450 ; 0000-0002-2852-7723 ; 0000-0002-2721-6317 ; 0000-0001-9068-938X ; 0000-0002-7341-9617 ; 0000-0001-5396-9868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841523001238$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37343323$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mirikharaji, Zahra</creatorcontrib><creatorcontrib>Abhishek, Kumar</creatorcontrib><creatorcontrib>Bissoto, Alceu</creatorcontrib><creatorcontrib>Barata, Catarina</creatorcontrib><creatorcontrib>Avila, Sandra</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>Hamarneh, Ghassan</creatorcontrib><title>A survey on deep learning for skin lesion segmentation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online33https://github.com/sfu-mial/skin-lesion-segmentation-survey.. [Display omitted] •A comprehensive review of 177 research papers from 2014 to 2022.•All studies are analyzed based on input data, model design, and evaluation aspects.•We discuss current trends, their limitations, and potential future directions.</description><subject>Deep learning</subject><subject>Segmentation</subject><subject>Skin lesion</subject><subject>Survey</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EoqXwBUgoSzYpfsVJFiyqipdUiQ2sLceeVC6JU-ykUv8el5Qu0Sw8jztz5YPQLcFzgol42MxbMFbNKaYsdmgh2BmaEiZIWnDKzk85ySboKoQNxjjnHF-iCcsZZ4yyKRKLJAx-B_ukc4kB2CYNKO-sWyd155PwZV3sBBunAdYtuF71sbhGF7VqAtwc3xn6fH76WL6mq_eXt-VilWqOeZ8aQatoBAwLY0qciYrEyIXIDHBTA2gORteEEwNMqVKUpcqUMpiXDMCUbIbux7tb330PEHrZ2qChaZSDbgiSFrTIcx55RCkbpdp3IXio5dbbVvm9JFgegMmN_AUmD8DkCCxu3R0NhipOTzt_hKLgcRRA_ObOgpdBW3A6XvKge2k6-6_BD3UUfKo</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Mirikharaji, Zahra</creator><creator>Abhishek, Kumar</creator><creator>Bissoto, Alceu</creator><creator>Barata, Catarina</creator><creator>Avila, Sandra</creator><creator>Valle, Eduardo</creator><creator>Celebi, M. Emre</creator><creator>Hamarneh, Ghassan</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2293-6160</orcidid><orcidid>https://orcid.org/0000-0001-5040-7448</orcidid><orcidid>https://orcid.org/0000-0001-7805-3450</orcidid><orcidid>https://orcid.org/0000-0002-2852-7723</orcidid><orcidid>https://orcid.org/0000-0002-2721-6317</orcidid><orcidid>https://orcid.org/0000-0001-9068-938X</orcidid><orcidid>https://orcid.org/0000-0002-7341-9617</orcidid><orcidid>https://orcid.org/0000-0001-5396-9868</orcidid></search><sort><creationdate>202308</creationdate><title>A survey on deep learning for skin lesion segmentation</title><author>Mirikharaji, Zahra ; Abhishek, Kumar ; Bissoto, Alceu ; Barata, Catarina ; Avila, Sandra ; Valle, Eduardo ; Celebi, M. Emre ; Hamarneh, Ghassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d62b433e306dd9056b1b1b7665de4dfeec4edcf141de3aa9699a5aad0493eed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Deep learning</topic><topic>Segmentation</topic><topic>Skin lesion</topic><topic>Survey</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirikharaji, Zahra</creatorcontrib><creatorcontrib>Abhishek, Kumar</creatorcontrib><creatorcontrib>Bissoto, Alceu</creatorcontrib><creatorcontrib>Barata, Catarina</creatorcontrib><creatorcontrib>Avila, Sandra</creatorcontrib><creatorcontrib>Valle, Eduardo</creatorcontrib><creatorcontrib>Celebi, M. Emre</creatorcontrib><creatorcontrib>Hamarneh, Ghassan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mirikharaji, Zahra</au><au>Abhishek, Kumar</au><au>Bissoto, Alceu</au><au>Barata, Catarina</au><au>Avila, Sandra</au><au>Valle, Eduardo</au><au>Celebi, M. Emre</au><au>Hamarneh, Ghassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A survey on deep learning for skin lesion segmentation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2023-08</date><risdate>2023</risdate><volume>88</volume><spage>102863</spage><epage>102863</epage><pages>102863-102863</pages><artnum>102863</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online33https://github.com/sfu-mial/skin-lesion-segmentation-survey.. [Display omitted] •A comprehensive review of 177 research papers from 2014 to 2022.•All studies are analyzed based on input data, model design, and evaluation aspects.•We discuss current trends, their limitations, and potential future directions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>37343323</pmid><doi>10.1016/j.media.2023.102863</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2293-6160</orcidid><orcidid>https://orcid.org/0000-0001-5040-7448</orcidid><orcidid>https://orcid.org/0000-0001-7805-3450</orcidid><orcidid>https://orcid.org/0000-0002-2852-7723</orcidid><orcidid>https://orcid.org/0000-0002-2721-6317</orcidid><orcidid>https://orcid.org/0000-0001-9068-938X</orcidid><orcidid>https://orcid.org/0000-0002-7341-9617</orcidid><orcidid>https://orcid.org/0000-0001-5396-9868</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2023-08, Vol.88, p.102863-102863, Article 102863
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_2828774101
source Elsevier ScienceDirect Journals Complete
subjects Deep learning
Segmentation
Skin lesion
Survey
title A survey on deep learning for skin lesion segmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T20%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20survey%20on%20deep%20learning%20for%20skin%20lesion%20segmentation&rft.jtitle=Medical%20image%20analysis&rft.au=Mirikharaji,%20Zahra&rft.date=2023-08&rft.volume=88&rft.spage=102863&rft.epage=102863&rft.pages=102863-102863&rft.artnum=102863&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2023.102863&rft_dat=%3Cproquest_cross%3E2828774101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828774101&rft_id=info:pmid/37343323&rft_els_id=S1361841523001238&rfr_iscdi=true