Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots

Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps‐to‐ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of ion of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-08, Vol.62 (33), p.e202305817-n/a
Hauptverfasser: Fang, Jiawen, Wang, Yiou, Kurashvili, Mariam, Rieger, Sebastian, Kasprzyk, Wiktor, Wang, Qingli, Stolarczyk, Jacek K., Feldmann, Jochen, Debnath, Tushar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 33
container_start_page e202305817
container_title Angewandte Chemie International Edition
container_volume 62
creator Fang, Jiawen
Wang, Yiou
Kurashvili, Mariam
Rieger, Sebastian
Kasprzyk, Wiktor
Wang, Qingli
Stolarczyk, Jacek K.
Feldmann, Jochen
Debnath, Tushar
description Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps‐to‐ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of ion of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady‐state and ultrafast spectroscopic measurements that demonstrate proton ion within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four‐level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials. Pyridinic nitrogen‐containing carbon dots may a proton from the neighbouring water molecules (the so‐called photobasic effect) at the excited state, leading to the significant promotion of photocatalytic performance. Moreover, due to the four‐level energy diagram, the protonated carbon dot shows a net optical gain at the excited state, leading to stimulated emission, revealing a unique competitive mechanism for photocatalytic hydrogen generation.
doi_str_mv 10.1002/anie.202305817
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828759054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2847207669</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4137-b388834e1bc53a123f6e9225abd1a8a24e2ca5ba34e1678e3e9a5e6972a2e1c93</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgivPr6lEKXrx05qNp0qPMuQ2GCtOTh_K2e6eRrplJi9t_b8qmghdPCeGXh_d9CDlntM8o5ddQG-xzygWVmqk9csQkZ7FQSuyHeyJErLRkPXLs_XvwWtP0kPSEEonMaHJEXmZm2VYN1GhbH403c2dfsY5GWKODxtg6gnoeDdelWVW4jmZNx6HB8LY03nfA1NHjm21sAd6U0QBcER5vbeNPycECKo9nu_OEPN8NnwbjePowmgxupnGZMKHiQmitRYKsKKUAxsUixYxzCcWcgQaeIC9BFtCRVGkUmIHENFMcOLIyEyfkapu7cvajRd_kYbQSq2q7Vc411yqsK5NAL__Qd9u6OkwXVKI4VWnaBfa3qnTWe4eLfOXMEtwmZzTvas-72vOf2sOHi11sWyxx_sO_ew4g24JPU-Hmn7j85n4y_A3_AlQtjqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2847207669</pqid></control><display><type>article</type><title>Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots</title><source>Wiley Online Library All Journals</source><creator>Fang, Jiawen ; Wang, Yiou ; Kurashvili, Mariam ; Rieger, Sebastian ; Kasprzyk, Wiktor ; Wang, Qingli ; Stolarczyk, Jacek K. ; Feldmann, Jochen ; Debnath, Tushar</creator><creatorcontrib>Fang, Jiawen ; Wang, Yiou ; Kurashvili, Mariam ; Rieger, Sebastian ; Kasprzyk, Wiktor ; Wang, Qingli ; Stolarczyk, Jacek K. ; Feldmann, Jochen ; Debnath, Tushar</creatorcontrib><description>Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps‐to‐ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of ion of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady‐state and ultrafast spectroscopic measurements that demonstrate proton ion within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four‐level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials. Pyridinic nitrogen‐containing carbon dots may a proton from the neighbouring water molecules (the so‐called photobasic effect) at the excited state, leading to the significant promotion of photocatalytic performance. Moreover, due to the four‐level energy diagram, the protonated carbon dot shows a net optical gain at the excited state, leading to stimulated emission, revealing a unique competitive mechanism for photocatalytic hydrogen generation.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202305817</identifier><identifier>PMID: 37345904</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Active sites ; Carbon ; Carbon dots ; Catalysts ; Catalytic activity ; Electron transfer ; Emissions ; Excitation ; Excited State Proton Transfer ; Hydrogen ; Hydrogen production ; Photobasic Carbon Dots ; Photocatalysis ; Photocatalytic Hydrogen Generation ; Photoelectrons ; Protons ; Stimulated Emission ; Ultrafast Timescale ; Water chemistry ; Water splitting</subject><ispartof>Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202305817-n/a</ispartof><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4137-b388834e1bc53a123f6e9225abd1a8a24e2ca5ba34e1678e3e9a5e6972a2e1c93</citedby><cites>FETCH-LOGICAL-c4137-b388834e1bc53a123f6e9225abd1a8a24e2ca5ba34e1678e3e9a5e6972a2e1c93</cites><orcidid>0000-0002-8108-4482 ; 0000-0002-9816-5596 ; 0000-0001-8702-5304 ; 0000-0001-7935-4204</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202305817$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202305817$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37345904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fang, Jiawen</creatorcontrib><creatorcontrib>Wang, Yiou</creatorcontrib><creatorcontrib>Kurashvili, Mariam</creatorcontrib><creatorcontrib>Rieger, Sebastian</creatorcontrib><creatorcontrib>Kasprzyk, Wiktor</creatorcontrib><creatorcontrib>Wang, Qingli</creatorcontrib><creatorcontrib>Stolarczyk, Jacek K.</creatorcontrib><creatorcontrib>Feldmann, Jochen</creatorcontrib><creatorcontrib>Debnath, Tushar</creatorcontrib><title>Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps‐to‐ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of ion of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady‐state and ultrafast spectroscopic measurements that demonstrate proton ion within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four‐level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials. Pyridinic nitrogen‐containing carbon dots may a proton from the neighbouring water molecules (the so‐called photobasic effect) at the excited state, leading to the significant promotion of photocatalytic performance. Moreover, due to the four‐level energy diagram, the protonated carbon dot shows a net optical gain at the excited state, leading to stimulated emission, revealing a unique competitive mechanism for photocatalytic hydrogen generation.</description><subject>Acceleration</subject><subject>Active sites</subject><subject>Carbon</subject><subject>Carbon dots</subject><subject>Catalysts</subject><subject>Catalytic activity</subject><subject>Electron transfer</subject><subject>Emissions</subject><subject>Excitation</subject><subject>Excited State Proton Transfer</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Photobasic Carbon Dots</subject><subject>Photocatalysis</subject><subject>Photocatalytic Hydrogen Generation</subject><subject>Photoelectrons</subject><subject>Protons</subject><subject>Stimulated Emission</subject><subject>Ultrafast Timescale</subject><subject>Water chemistry</subject><subject>Water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqF0M1LwzAYBvAgivPr6lEKXrx05qNp0qPMuQ2GCtOTh_K2e6eRrplJi9t_b8qmghdPCeGXh_d9CDlntM8o5ddQG-xzygWVmqk9csQkZ7FQSuyHeyJErLRkPXLs_XvwWtP0kPSEEonMaHJEXmZm2VYN1GhbH403c2dfsY5GWKODxtg6gnoeDdelWVW4jmZNx6HB8LY03nfA1NHjm21sAd6U0QBcER5vbeNPycECKo9nu_OEPN8NnwbjePowmgxupnGZMKHiQmitRYKsKKUAxsUixYxzCcWcgQaeIC9BFtCRVGkUmIHENFMcOLIyEyfkapu7cvajRd_kYbQSq2q7Vc411yqsK5NAL__Qd9u6OkwXVKI4VWnaBfa3qnTWe4eLfOXMEtwmZzTvas-72vOf2sOHi11sWyxx_sO_ew4g24JPU-Hmn7j85n4y_A3_AlQtjqg</recordid><startdate>20230814</startdate><enddate>20230814</enddate><creator>Fang, Jiawen</creator><creator>Wang, Yiou</creator><creator>Kurashvili, Mariam</creator><creator>Rieger, Sebastian</creator><creator>Kasprzyk, Wiktor</creator><creator>Wang, Qingli</creator><creator>Stolarczyk, Jacek K.</creator><creator>Feldmann, Jochen</creator><creator>Debnath, Tushar</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8108-4482</orcidid><orcidid>https://orcid.org/0000-0002-9816-5596</orcidid><orcidid>https://orcid.org/0000-0001-8702-5304</orcidid><orcidid>https://orcid.org/0000-0001-7935-4204</orcidid></search><sort><creationdate>20230814</creationdate><title>Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots</title><author>Fang, Jiawen ; Wang, Yiou ; Kurashvili, Mariam ; Rieger, Sebastian ; Kasprzyk, Wiktor ; Wang, Qingli ; Stolarczyk, Jacek K. ; Feldmann, Jochen ; Debnath, Tushar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4137-b388834e1bc53a123f6e9225abd1a8a24e2ca5ba34e1678e3e9a5e6972a2e1c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceleration</topic><topic>Active sites</topic><topic>Carbon</topic><topic>Carbon dots</topic><topic>Catalysts</topic><topic>Catalytic activity</topic><topic>Electron transfer</topic><topic>Emissions</topic><topic>Excitation</topic><topic>Excited State Proton Transfer</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Photobasic Carbon Dots</topic><topic>Photocatalysis</topic><topic>Photocatalytic Hydrogen Generation</topic><topic>Photoelectrons</topic><topic>Protons</topic><topic>Stimulated Emission</topic><topic>Ultrafast Timescale</topic><topic>Water chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Jiawen</creatorcontrib><creatorcontrib>Wang, Yiou</creatorcontrib><creatorcontrib>Kurashvili, Mariam</creatorcontrib><creatorcontrib>Rieger, Sebastian</creatorcontrib><creatorcontrib>Kasprzyk, Wiktor</creatorcontrib><creatorcontrib>Wang, Qingli</creatorcontrib><creatorcontrib>Stolarczyk, Jacek K.</creatorcontrib><creatorcontrib>Feldmann, Jochen</creatorcontrib><creatorcontrib>Debnath, Tushar</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Jiawen</au><au>Wang, Yiou</au><au>Kurashvili, Mariam</au><au>Rieger, Sebastian</au><au>Kasprzyk, Wiktor</au><au>Wang, Qingli</au><au>Stolarczyk, Jacek K.</au><au>Feldmann, Jochen</au><au>Debnath, Tushar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-08-14</date><risdate>2023</risdate><volume>62</volume><issue>33</issue><spage>e202305817</spage><epage>n/a</epage><pages>e202305817-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Photocatalytic water splitting is a promising approach to generating sustainable hydrogen. However, the transport of photoelectrons to the catalyst sites, usually within ps‐to‐ns timescales, is much faster than proton delivery (∼μs), which limits the activity. Therefore, the acceleration of ion of protons from water molecules towards the catalytic sites to keep up with the electron transfer rate can significantly promote hydrogen production. The photobasic effect that is the increase in proton affinity upon excitation offers means to achieve this objective. Herein, we design photobasic carbon dots and identify that internal pyridinic N sites are intrinsically photobasic. This is supported by steady‐state and ultrafast spectroscopic measurements that demonstrate proton ion within a few picoseconds of excitation. Furthermore, we show that in water, they form a unique four‐level lasing scheme with optical gain and stimulated emission. The latter competes with photocatalysis, revealing a rather unique mechanism for efficiency loss, such that the stimulated emission can act as a toggle for photocatalytic activity. This provides additional means of controlling the photocatalytic process and helps the rational design of photocatalytic materials. Pyridinic nitrogen‐containing carbon dots may a proton from the neighbouring water molecules (the so‐called photobasic effect) at the excited state, leading to the significant promotion of photocatalytic performance. Moreover, due to the four‐level energy diagram, the protonated carbon dot shows a net optical gain at the excited state, leading to stimulated emission, revealing a unique competitive mechanism for photocatalytic hydrogen generation.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37345904</pmid><doi>10.1002/anie.202305817</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-8108-4482</orcidid><orcidid>https://orcid.org/0000-0002-9816-5596</orcidid><orcidid>https://orcid.org/0000-0001-8702-5304</orcidid><orcidid>https://orcid.org/0000-0001-7935-4204</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-08, Vol.62 (33), p.e202305817-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2828759054
source Wiley Online Library All Journals
subjects Acceleration
Active sites
Carbon
Carbon dots
Catalysts
Catalytic activity
Electron transfer
Emissions
Excitation
Excited State Proton Transfer
Hydrogen
Hydrogen production
Photobasic Carbon Dots
Photocatalysis
Photocatalytic Hydrogen Generation
Photoelectrons
Protons
Stimulated Emission
Ultrafast Timescale
Water chemistry
Water splitting
title Simultaneous Hydrogen Generation and Exciplex Stimulated Emission in Photobasic Carbon Dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Hydrogen%20Generation%20and%20Exciplex%20Stimulated%20Emission%20in%20Photobasic%20Carbon%20Dots&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Fang,%20Jiawen&rft.date=2023-08-14&rft.volume=62&rft.issue=33&rft.spage=e202305817&rft.epage=n/a&rft.pages=e202305817-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202305817&rft_dat=%3Cproquest_cross%3E2847207669%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2847207669&rft_id=info:pmid/37345904&rfr_iscdi=true