Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives
Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is criti...
Gespeichert in:
Veröffentlicht in: | Ageing research reviews 2023-08, Vol.89, p.101987-101987, Article 101987 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101987 |
---|---|
container_issue | |
container_start_page | 101987 |
container_title | Ageing research reviews |
container_volume | 89 |
creator | Lista, Simone González-Domínguez, Raúl López-Ortiz, Susana González-Domínguez, Álvaro Menéndez, Héctor Martín-Hernández, Juan Lucia, Alejandro Emanuele, Enzo Centonze, Diego Imbimbo, Bruno P. Triaca, Viviana Lionetto, Luana Simmaco, Maurizio Cuperlovic-Culf, Miroslava Mill, Jericha Li, Lingjun Mapstone, Mark Santos-Lozano, Alejandro Nisticò, Robert |
description | Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics – coupled with existing accessible biomarkers used for AD screening and diagnosis – can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
•Exploring metabolomic biomarker profiles shows the complexity of AD pathophysiology.•Metabolomics helps disclose candidate blood-based biomarker signatures.•Lipid metabolism is the most consistently dysregulated pathway in AD pathogenesis.•Metabolomics aids to optimize AD diagnosis, prognosis, and targeted therapies.•Metabolomics/lipidomics data can provide a holistic depiction of AD pathophysiology. |
doi_str_mv | 10.1016/j.arr.2023.101987 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828756901</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1568163723001460</els_id><sourcerecordid>2828756901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-595abd83e9e5b73c6b29421f6ffdb2e9dc86ab10d184644a42a49854c7b06c7a3</originalsourceid><addsrcrecordid>eNp9kMlKxEAQhhtRnHF5AC-So5eM6SW96EkGNxAE0ZvQdLor2kOWsTsZ0JOv4ev5JCbM6NFTVcH3_1AfQkc4m-EM89PFzIQwIxmh462k2EJTLAVJFWdqe9hzLlPMqZigvRgX2ZBRnOyiCRWUUS7UFD3fNh28BNP5FSQ1dKZoq7b2NibRemgsJL5JLqqPV_A1hO_Pr5g4H8FEOEseoIKVGRnTuKTsuz5AsoQQl2DHvniAdkpTRTjczH30dHX5OL9J7-6vb-cXd6mlOe3SXOWmcJKCgrwQ1PKCKEZwycvSFQSUs5KbAmcOS8YZM4wYpmTOrCgyboWh--hk3bsM7VsPsdO1jxaqyjTQ9lETSaTIucrwgOI1akMbY4BSL4OvTXjXONOjVL3Qg1Q9StVrqUPmeFPfFzW4v8SvxQE4XwMwPLnyEPRGnvNhUKFd6_-p_wGsrIm7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828756901</pqid></control><display><type>article</type><title>Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lista, Simone ; González-Domínguez, Raúl ; López-Ortiz, Susana ; González-Domínguez, Álvaro ; Menéndez, Héctor ; Martín-Hernández, Juan ; Lucia, Alejandro ; Emanuele, Enzo ; Centonze, Diego ; Imbimbo, Bruno P. ; Triaca, Viviana ; Lionetto, Luana ; Simmaco, Maurizio ; Cuperlovic-Culf, Miroslava ; Mill, Jericha ; Li, Lingjun ; Mapstone, Mark ; Santos-Lozano, Alejandro ; Nisticò, Robert</creator><creatorcontrib>Lista, Simone ; González-Domínguez, Raúl ; López-Ortiz, Susana ; González-Domínguez, Álvaro ; Menéndez, Héctor ; Martín-Hernández, Juan ; Lucia, Alejandro ; Emanuele, Enzo ; Centonze, Diego ; Imbimbo, Bruno P. ; Triaca, Viviana ; Lionetto, Luana ; Simmaco, Maurizio ; Cuperlovic-Culf, Miroslava ; Mill, Jericha ; Li, Lingjun ; Mapstone, Mark ; Santos-Lozano, Alejandro ; Nisticò, Robert</creatorcontrib><description>Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics – coupled with existing accessible biomarkers used for AD screening and diagnosis – can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
•Exploring metabolomic biomarker profiles shows the complexity of AD pathophysiology.•Metabolomics helps disclose candidate blood-based biomarker signatures.•Lipid metabolism is the most consistently dysregulated pathway in AD pathogenesis.•Metabolomics aids to optimize AD diagnosis, prognosis, and targeted therapies.•Metabolomics/lipidomics data can provide a holistic depiction of AD pathophysiology.</description><identifier>ISSN: 1568-1637</identifier><identifier>EISSN: 1872-9649</identifier><identifier>DOI: 10.1016/j.arr.2023.101987</identifier><identifier>PMID: 37343679</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Alzheimer Disease - metabolism ; Alzheimer’s disease ; Amino acids ; Biomarkers ; Biomarkers - metabolism ; Humans ; Lipids ; Metabolome ; Metabolomics ; Metabolomics - methods ; Systems biology</subject><ispartof>Ageing research reviews, 2023-08, Vol.89, p.101987-101987, Article 101987</ispartof><rights>2023 Elsevier B.V.</rights><rights>Copyright © 2023 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-595abd83e9e5b73c6b29421f6ffdb2e9dc86ab10d184644a42a49854c7b06c7a3</citedby><cites>FETCH-LOGICAL-c353t-595abd83e9e5b73c6b29421f6ffdb2e9dc86ab10d184644a42a49854c7b06c7a3</cites><orcidid>0000-0001-6804-7858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.arr.2023.101987$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37343679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lista, Simone</creatorcontrib><creatorcontrib>González-Domínguez, Raúl</creatorcontrib><creatorcontrib>López-Ortiz, Susana</creatorcontrib><creatorcontrib>González-Domínguez, Álvaro</creatorcontrib><creatorcontrib>Menéndez, Héctor</creatorcontrib><creatorcontrib>Martín-Hernández, Juan</creatorcontrib><creatorcontrib>Lucia, Alejandro</creatorcontrib><creatorcontrib>Emanuele, Enzo</creatorcontrib><creatorcontrib>Centonze, Diego</creatorcontrib><creatorcontrib>Imbimbo, Bruno P.</creatorcontrib><creatorcontrib>Triaca, Viviana</creatorcontrib><creatorcontrib>Lionetto, Luana</creatorcontrib><creatorcontrib>Simmaco, Maurizio</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Mill, Jericha</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Mapstone, Mark</creatorcontrib><creatorcontrib>Santos-Lozano, Alejandro</creatorcontrib><creatorcontrib>Nisticò, Robert</creatorcontrib><title>Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives</title><title>Ageing research reviews</title><addtitle>Ageing Res Rev</addtitle><description>Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics – coupled with existing accessible biomarkers used for AD screening and diagnosis – can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
•Exploring metabolomic biomarker profiles shows the complexity of AD pathophysiology.•Metabolomics helps disclose candidate blood-based biomarker signatures.•Lipid metabolism is the most consistently dysregulated pathway in AD pathogenesis.•Metabolomics aids to optimize AD diagnosis, prognosis, and targeted therapies.•Metabolomics/lipidomics data can provide a holistic depiction of AD pathophysiology.</description><subject>Alzheimer Disease - metabolism</subject><subject>Alzheimer’s disease</subject><subject>Amino acids</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Humans</subject><subject>Lipids</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Metabolomics - methods</subject><subject>Systems biology</subject><issn>1568-1637</issn><issn>1872-9649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMlKxEAQhhtRnHF5AC-So5eM6SW96EkGNxAE0ZvQdLor2kOWsTsZ0JOv4ev5JCbM6NFTVcH3_1AfQkc4m-EM89PFzIQwIxmh462k2EJTLAVJFWdqe9hzLlPMqZigvRgX2ZBRnOyiCRWUUS7UFD3fNh28BNP5FSQ1dKZoq7b2NibRemgsJL5JLqqPV_A1hO_Pr5g4H8FEOEseoIKVGRnTuKTsuz5AsoQQl2DHvniAdkpTRTjczH30dHX5OL9J7-6vb-cXd6mlOe3SXOWmcJKCgrwQ1PKCKEZwycvSFQSUs5KbAmcOS8YZM4wYpmTOrCgyboWh--hk3bsM7VsPsdO1jxaqyjTQ9lETSaTIucrwgOI1akMbY4BSL4OvTXjXONOjVL3Qg1Q9StVrqUPmeFPfFzW4v8SvxQE4XwMwPLnyEPRGnvNhUKFd6_-p_wGsrIm7</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Lista, Simone</creator><creator>González-Domínguez, Raúl</creator><creator>López-Ortiz, Susana</creator><creator>González-Domínguez, Álvaro</creator><creator>Menéndez, Héctor</creator><creator>Martín-Hernández, Juan</creator><creator>Lucia, Alejandro</creator><creator>Emanuele, Enzo</creator><creator>Centonze, Diego</creator><creator>Imbimbo, Bruno P.</creator><creator>Triaca, Viviana</creator><creator>Lionetto, Luana</creator><creator>Simmaco, Maurizio</creator><creator>Cuperlovic-Culf, Miroslava</creator><creator>Mill, Jericha</creator><creator>Li, Lingjun</creator><creator>Mapstone, Mark</creator><creator>Santos-Lozano, Alejandro</creator><creator>Nisticò, Robert</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6804-7858</orcidid></search><sort><creationdate>202308</creationdate><title>Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives</title><author>Lista, Simone ; González-Domínguez, Raúl ; López-Ortiz, Susana ; González-Domínguez, Álvaro ; Menéndez, Héctor ; Martín-Hernández, Juan ; Lucia, Alejandro ; Emanuele, Enzo ; Centonze, Diego ; Imbimbo, Bruno P. ; Triaca, Viviana ; Lionetto, Luana ; Simmaco, Maurizio ; Cuperlovic-Culf, Miroslava ; Mill, Jericha ; Li, Lingjun ; Mapstone, Mark ; Santos-Lozano, Alejandro ; Nisticò, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-595abd83e9e5b73c6b29421f6ffdb2e9dc86ab10d184644a42a49854c7b06c7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alzheimer Disease - metabolism</topic><topic>Alzheimer’s disease</topic><topic>Amino acids</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Humans</topic><topic>Lipids</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Metabolomics - methods</topic><topic>Systems biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lista, Simone</creatorcontrib><creatorcontrib>González-Domínguez, Raúl</creatorcontrib><creatorcontrib>López-Ortiz, Susana</creatorcontrib><creatorcontrib>González-Domínguez, Álvaro</creatorcontrib><creatorcontrib>Menéndez, Héctor</creatorcontrib><creatorcontrib>Martín-Hernández, Juan</creatorcontrib><creatorcontrib>Lucia, Alejandro</creatorcontrib><creatorcontrib>Emanuele, Enzo</creatorcontrib><creatorcontrib>Centonze, Diego</creatorcontrib><creatorcontrib>Imbimbo, Bruno P.</creatorcontrib><creatorcontrib>Triaca, Viviana</creatorcontrib><creatorcontrib>Lionetto, Luana</creatorcontrib><creatorcontrib>Simmaco, Maurizio</creatorcontrib><creatorcontrib>Cuperlovic-Culf, Miroslava</creatorcontrib><creatorcontrib>Mill, Jericha</creatorcontrib><creatorcontrib>Li, Lingjun</creatorcontrib><creatorcontrib>Mapstone, Mark</creatorcontrib><creatorcontrib>Santos-Lozano, Alejandro</creatorcontrib><creatorcontrib>Nisticò, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ageing research reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lista, Simone</au><au>González-Domínguez, Raúl</au><au>López-Ortiz, Susana</au><au>González-Domínguez, Álvaro</au><au>Menéndez, Héctor</au><au>Martín-Hernández, Juan</au><au>Lucia, Alejandro</au><au>Emanuele, Enzo</au><au>Centonze, Diego</au><au>Imbimbo, Bruno P.</au><au>Triaca, Viviana</au><au>Lionetto, Luana</au><au>Simmaco, Maurizio</au><au>Cuperlovic-Culf, Miroslava</au><au>Mill, Jericha</au><au>Li, Lingjun</au><au>Mapstone, Mark</au><au>Santos-Lozano, Alejandro</au><au>Nisticò, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives</atitle><jtitle>Ageing research reviews</jtitle><addtitle>Ageing Res Rev</addtitle><date>2023-08</date><risdate>2023</risdate><volume>89</volume><spage>101987</spage><epage>101987</epage><pages>101987-101987</pages><artnum>101987</artnum><issn>1568-1637</issn><eissn>1872-9649</eissn><abstract>Alzheimer’s disease (AD) is determined by various pathophysiological mechanisms starting 10–25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics – coupled with existing accessible biomarkers used for AD screening and diagnosis – can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
•Exploring metabolomic biomarker profiles shows the complexity of AD pathophysiology.•Metabolomics helps disclose candidate blood-based biomarker signatures.•Lipid metabolism is the most consistently dysregulated pathway in AD pathogenesis.•Metabolomics aids to optimize AD diagnosis, prognosis, and targeted therapies.•Metabolomics/lipidomics data can provide a holistic depiction of AD pathophysiology.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>37343679</pmid><doi>10.1016/j.arr.2023.101987</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6804-7858</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1568-1637 |
ispartof | Ageing research reviews, 2023-08, Vol.89, p.101987-101987, Article 101987 |
issn | 1568-1637 1872-9649 |
language | eng |
recordid | cdi_proquest_miscellaneous_2828756901 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Alzheimer Disease - metabolism Alzheimer’s disease Amino acids Biomarkers Biomarkers - metabolism Humans Lipids Metabolome Metabolomics Metabolomics - methods Systems biology |
title | Integrative metabolomics science in Alzheimer’s disease: Relevance and future perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A39%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrative%20metabolomics%20science%20in%20Alzheimer%E2%80%99s%20disease:%20Relevance%20and%20future%20perspectives&rft.jtitle=Ageing%20research%20reviews&rft.au=Lista,%20Simone&rft.date=2023-08&rft.volume=89&rft.spage=101987&rft.epage=101987&rft.pages=101987-101987&rft.artnum=101987&rft.issn=1568-1637&rft.eissn=1872-9649&rft_id=info:doi/10.1016/j.arr.2023.101987&rft_dat=%3Cproquest_cross%3E2828756901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828756901&rft_id=info:pmid/37343679&rft_els_id=S1568163723001460&rfr_iscdi=true |