On non-linear stochastic dynamics of quarter car models

In this paper, high-dimensional probability density functions of non-linear dynamical systems are calculated solving the corresponding Fokker-Planck equations. Zeroth approximations are derived from solutions of corresponding linear systems and analytical results for first- and second-order expected...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of non-linear mechanics 2004-07, Vol.39 (5), p.753-765
1. Verfasser: Von Wagner, U
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 765
container_issue 5
container_start_page 753
container_title International journal of non-linear mechanics
container_volume 39
creator Von Wagner, U
description In this paper, high-dimensional probability density functions of non-linear dynamical systems are calculated solving the corresponding Fokker-Planck equations. Zeroth approximations are derived from solutions of corresponding linear systems and analytical results for first- and second-order expected values. The zeroth approximations are used as weighting functions for the construction of generalized Hermite polynomials. The Fokker-Planck equation is expanded in terms of these polynomials and subsequently solved by a Galerkin method. As an example, models of a quarter car with non-linear damping subjected to white or colored noise excitation are considered. The damping is piecewise linear and asymmetric leading to a non-vanishing expected value of the displacement of the car. The excitation is realized by the roughness of the road and the car moves with constant velocity. Monte-Carlo simulations and analytical results are used for comparison.
doi_str_mv 10.1016/50020-7462(03)00039-8
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_28283677</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28283677</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_282836773</originalsourceid><addsrcrecordid>eNqNyr0OwiAUQGEGTaw_j2DCZHRAb6GWOhuNm4t7QyiNGAqWSwffXgfj7HSSk4-QZQ7bHPJytwfgwGRR8jWIDQCIA6tGJPvtCZkiPuBjC5AZkVdPffDMWW9UpJiCvitMVtPm5VVnNdLQ0n5QMZlI9Yd0oTEO52TcKodm8e2MrM6n2_HCnjH0g8FUdxa1cU55EwasecUrUUop_oZvdAY-Ig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28283677</pqid></control><display><type>article</type><title>On non-linear stochastic dynamics of quarter car models</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Von Wagner, U</creator><creatorcontrib>Von Wagner, U</creatorcontrib><description>In this paper, high-dimensional probability density functions of non-linear dynamical systems are calculated solving the corresponding Fokker-Planck equations. Zeroth approximations are derived from solutions of corresponding linear systems and analytical results for first- and second-order expected values. The zeroth approximations are used as weighting functions for the construction of generalized Hermite polynomials. The Fokker-Planck equation is expanded in terms of these polynomials and subsequently solved by a Galerkin method. As an example, models of a quarter car with non-linear damping subjected to white or colored noise excitation are considered. The damping is piecewise linear and asymmetric leading to a non-vanishing expected value of the displacement of the car. The excitation is realized by the roughness of the road and the car moves with constant velocity. Monte-Carlo simulations and analytical results are used for comparison.</description><identifier>ISSN: 0020-7462</identifier><identifier>DOI: 10.1016/50020-7462(03)00039-8</identifier><language>eng</language><ispartof>International journal of non-linear mechanics, 2004-07, Vol.39 (5), p.753-765</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Von Wagner, U</creatorcontrib><title>On non-linear stochastic dynamics of quarter car models</title><title>International journal of non-linear mechanics</title><description>In this paper, high-dimensional probability density functions of non-linear dynamical systems are calculated solving the corresponding Fokker-Planck equations. Zeroth approximations are derived from solutions of corresponding linear systems and analytical results for first- and second-order expected values. The zeroth approximations are used as weighting functions for the construction of generalized Hermite polynomials. The Fokker-Planck equation is expanded in terms of these polynomials and subsequently solved by a Galerkin method. As an example, models of a quarter car with non-linear damping subjected to white or colored noise excitation are considered. The damping is piecewise linear and asymmetric leading to a non-vanishing expected value of the displacement of the car. The excitation is realized by the roughness of the road and the car moves with constant velocity. Monte-Carlo simulations and analytical results are used for comparison.</description><issn>0020-7462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqNyr0OwiAUQGEGTaw_j2DCZHRAb6GWOhuNm4t7QyiNGAqWSwffXgfj7HSSk4-QZQ7bHPJytwfgwGRR8jWIDQCIA6tGJPvtCZkiPuBjC5AZkVdPffDMWW9UpJiCvitMVtPm5VVnNdLQ0n5QMZlI9Yd0oTEO52TcKodm8e2MrM6n2_HCnjH0g8FUdxa1cU55EwasecUrUUop_oZvdAY-Ig</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Von Wagner, U</creator><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>20040701</creationdate><title>On non-linear stochastic dynamics of quarter car models</title><author>Von Wagner, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_282836773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Von Wagner, U</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>International journal of non-linear mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Von Wagner, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On non-linear stochastic dynamics of quarter car models</atitle><jtitle>International journal of non-linear mechanics</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>39</volume><issue>5</issue><spage>753</spage><epage>765</epage><pages>753-765</pages><issn>0020-7462</issn><abstract>In this paper, high-dimensional probability density functions of non-linear dynamical systems are calculated solving the corresponding Fokker-Planck equations. Zeroth approximations are derived from solutions of corresponding linear systems and analytical results for first- and second-order expected values. The zeroth approximations are used as weighting functions for the construction of generalized Hermite polynomials. The Fokker-Planck equation is expanded in terms of these polynomials and subsequently solved by a Galerkin method. As an example, models of a quarter car with non-linear damping subjected to white or colored noise excitation are considered. The damping is piecewise linear and asymmetric leading to a non-vanishing expected value of the displacement of the car. The excitation is realized by the roughness of the road and the car moves with constant velocity. Monte-Carlo simulations and analytical results are used for comparison.</abstract><doi>10.1016/50020-7462(03)00039-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 0020-7462
ispartof International journal of non-linear mechanics, 2004-07, Vol.39 (5), p.753-765
issn 0020-7462
language eng
recordid cdi_proquest_miscellaneous_28283677
source Elsevier ScienceDirect Journals Complete
title On non-linear stochastic dynamics of quarter car models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A47%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20non-linear%20stochastic%20dynamics%20of%20quarter%20car%20models&rft.jtitle=International%20journal%20of%20non-linear%20mechanics&rft.au=Von%20Wagner,%20U&rft.date=2004-07-01&rft.volume=39&rft.issue=5&rft.spage=753&rft.epage=765&rft.pages=753-765&rft.issn=0020-7462&rft_id=info:doi/10.1016/50020-7462(03)00039-8&rft_dat=%3Cproquest%3E28283677%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28283677&rft_id=info:pmid/&rfr_iscdi=true