Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint
Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (S...
Gespeichert in:
Veröffentlicht in: | Experimental cell research 2023-08, Vol.429 (2), p.113672-113672, Article 113672 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 113672 |
---|---|
container_issue | 2 |
container_start_page | 113672 |
container_title | Experimental cell research |
container_volume | 429 |
creator | Ota, Saki Tanaka, Yui Yasutake, Ryuji Ikeda, Yuki Yuki, Ryuzaburo Nakayama, Yuji Saito, Youhei |
description | Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures. |
doi_str_mv | 10.1016/j.yexcr.2023.113672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828363405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0014482723002197</els_id><sourcerecordid>2828363405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-4f8c5441aac62b4e60d34e8cb655af8db6c614a458e01ea23f98ca48da5fc9223</originalsourceid><addsrcrecordid>eNp9kMtOHDEQRa2IKAyQL4gUeZlNT_xqj3uRBYJAIiFlE9aWu7rMeOgXthsxfx_DQJasSrp1bz0OIV84W3PG9ffdeo9PENeCCbnmXOqN-EBWnDWsEkqII7JijKtKGbE5Jicp7RhjxnD9iRzLjZTNRjQr8nAZUg4jZIreI-REJ0-36DJN2wnuacZhxujyErG0RjqEPOUAdI7TXZFSKFq7p2H0_YIjhPGO5i3SNIex65G6lHBo-z2FLcL9PIUxn5GP3vUJP7_WU3J79fPvxa_q5s_174vzmwoka3KlvIFaKe4caNEq1KyTCg20uq6dN12rQXPlVG2QcXRC-saAU6ZztYdGCHlKvh3mllMfFkzZDiEB9r0bcVqSFUYYqaVidbHKgxXilFJEb-cYBhf3ljP7zNru7Atr-8zaHliX1NfXBUs7YPc_8wa3GH4cDFjefAwYbYJQIGEXYkFtuym8u-Aff6WT7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828363405</pqid></control><display><type>article</type><title>Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ota, Saki ; Tanaka, Yui ; Yasutake, Ryuji ; Ikeda, Yuki ; Yuki, Ryuzaburo ; Nakayama, Yuji ; Saito, Youhei</creator><creatorcontrib>Ota, Saki ; Tanaka, Yui ; Yasutake, Ryuji ; Ikeda, Yuki ; Yuki, Ryuzaburo ; Nakayama, Yuji ; Saito, Youhei</creatorcontrib><description>Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.</description><identifier>ISSN: 0014-4827</identifier><identifier>EISSN: 1090-2422</identifier><identifier>DOI: 10.1016/j.yexcr.2023.113672</identifier><identifier>PMID: 37339729</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>CDC20 ; Cell Cycle Proteins - genetics ; Heat shock ; Heat-Shock Response ; Humans ; M Phase Cell Cycle Checkpoints ; MAD2 ; Mad2 Proteins - genetics ; Mad2 Proteins - metabolism ; Mitosis ; Mitotic progression ; Spindle Apparatus - metabolism ; Spindle assembly checkpoint ; Temperature</subject><ispartof>Experimental cell research, 2023-08, Vol.429 (2), p.113672-113672, Article 113672</ispartof><rights>2023 Elsevier Inc.</rights><rights>Copyright © 2023 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-4f8c5441aac62b4e60d34e8cb655af8db6c614a458e01ea23f98ca48da5fc9223</cites><orcidid>0000-0003-2056-253X ; 0000-0002-4072-3559 ; 0000-0002-8545-6925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yexcr.2023.113672$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37339729$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ota, Saki</creatorcontrib><creatorcontrib>Tanaka, Yui</creatorcontrib><creatorcontrib>Yasutake, Ryuji</creatorcontrib><creatorcontrib>Ikeda, Yuki</creatorcontrib><creatorcontrib>Yuki, Ryuzaburo</creatorcontrib><creatorcontrib>Nakayama, Yuji</creatorcontrib><creatorcontrib>Saito, Youhei</creatorcontrib><title>Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint</title><title>Experimental cell research</title><addtitle>Exp Cell Res</addtitle><description>Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.</description><subject>CDC20</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Heat shock</subject><subject>Heat-Shock Response</subject><subject>Humans</subject><subject>M Phase Cell Cycle Checkpoints</subject><subject>MAD2</subject><subject>Mad2 Proteins - genetics</subject><subject>Mad2 Proteins - metabolism</subject><subject>Mitosis</subject><subject>Mitotic progression</subject><subject>Spindle Apparatus - metabolism</subject><subject>Spindle assembly checkpoint</subject><subject>Temperature</subject><issn>0014-4827</issn><issn>1090-2422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOHDEQRa2IKAyQL4gUeZlNT_xqj3uRBYJAIiFlE9aWu7rMeOgXthsxfx_DQJasSrp1bz0OIV84W3PG9ffdeo9PENeCCbnmXOqN-EBWnDWsEkqII7JijKtKGbE5Jicp7RhjxnD9iRzLjZTNRjQr8nAZUg4jZIreI-REJ0-36DJN2wnuacZhxujyErG0RjqEPOUAdI7TXZFSKFq7p2H0_YIjhPGO5i3SNIex65G6lHBo-z2FLcL9PIUxn5GP3vUJP7_WU3J79fPvxa_q5s_174vzmwoka3KlvIFaKe4caNEq1KyTCg20uq6dN12rQXPlVG2QcXRC-saAU6ZztYdGCHlKvh3mllMfFkzZDiEB9r0bcVqSFUYYqaVidbHKgxXilFJEb-cYBhf3ljP7zNru7Atr-8zaHliX1NfXBUs7YPc_8wa3GH4cDFjefAwYbYJQIGEXYkFtuym8u-Aff6WT7Q</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Ota, Saki</creator><creator>Tanaka, Yui</creator><creator>Yasutake, Ryuji</creator><creator>Ikeda, Yuki</creator><creator>Yuki, Ryuzaburo</creator><creator>Nakayama, Yuji</creator><creator>Saito, Youhei</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2056-253X</orcidid><orcidid>https://orcid.org/0000-0002-4072-3559</orcidid><orcidid>https://orcid.org/0000-0002-8545-6925</orcidid></search><sort><creationdate>20230815</creationdate><title>Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint</title><author>Ota, Saki ; Tanaka, Yui ; Yasutake, Ryuji ; Ikeda, Yuki ; Yuki, Ryuzaburo ; Nakayama, Yuji ; Saito, Youhei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-4f8c5441aac62b4e60d34e8cb655af8db6c614a458e01ea23f98ca48da5fc9223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CDC20</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Heat shock</topic><topic>Heat-Shock Response</topic><topic>Humans</topic><topic>M Phase Cell Cycle Checkpoints</topic><topic>MAD2</topic><topic>Mad2 Proteins - genetics</topic><topic>Mad2 Proteins - metabolism</topic><topic>Mitosis</topic><topic>Mitotic progression</topic><topic>Spindle Apparatus - metabolism</topic><topic>Spindle assembly checkpoint</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ota, Saki</creatorcontrib><creatorcontrib>Tanaka, Yui</creatorcontrib><creatorcontrib>Yasutake, Ryuji</creatorcontrib><creatorcontrib>Ikeda, Yuki</creatorcontrib><creatorcontrib>Yuki, Ryuzaburo</creatorcontrib><creatorcontrib>Nakayama, Yuji</creatorcontrib><creatorcontrib>Saito, Youhei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental cell research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ota, Saki</au><au>Tanaka, Yui</au><au>Yasutake, Ryuji</au><au>Ikeda, Yuki</au><au>Yuki, Ryuzaburo</au><au>Nakayama, Yuji</au><au>Saito, Youhei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint</atitle><jtitle>Experimental cell research</jtitle><addtitle>Exp Cell Res</addtitle><date>2023-08-15</date><risdate>2023</risdate><volume>429</volume><issue>2</issue><spage>113672</spage><epage>113672</epage><pages>113672-113672</pages><artnum>113672</artnum><issn>0014-4827</issn><eissn>1090-2422</eissn><abstract>Heat shock is a physiological and environmental stress that leads to the denaturation and inactivation of cellular proteins and is used in hyperthermia cancer therapy. Previously, we revealed that mild heat shock (42 °C) delays the mitotic progression by activating the spindle assembly checkpoint (SAC). However, it is unclear whether SAC activation is maintained at higher temperatures than 42 °C. Here, we demonstrated that a high temperature of 44 °C just before mitotic entry led to a prolonged mitotic delay in the early phase, which was shortened by the SAC inhibitor, AZ3146, indicating SAC activation. Interestingly, mitotic slippage was observed at 44 °C after a prolonged delay but not at 42 °C heat shock. Furthermore, the multinuclear cells were generated by mitotic slippage in 44 °C-treated cells. Immunofluorescence analysis revealed that heat shock at 44 °C reduces the kinetochore localization of MAD2, which is essential for mitotic checkpoint activation, in nocodazole-arrested mitotic cells. These results indicate that 44 °C heat shock causes SAC inactivation even after full activation of SAC and suggest that decreased localization of MAD2 at the kinetochore is involved in heat shock-induced mitotic slippage, resulting in multinucleation. Since mitotic slippage causes drug resistance and chromosomal instability, we propose that there may be a risk of cancer malignancy when the cells are exposed to high temperatures.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>37339729</pmid><doi>10.1016/j.yexcr.2023.113672</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2056-253X</orcidid><orcidid>https://orcid.org/0000-0002-4072-3559</orcidid><orcidid>https://orcid.org/0000-0002-8545-6925</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0014-4827 |
ispartof | Experimental cell research, 2023-08, Vol.429 (2), p.113672-113672, Article 113672 |
issn | 0014-4827 1090-2422 |
language | eng |
recordid | cdi_proquest_miscellaneous_2828363405 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | CDC20 Cell Cycle Proteins - genetics Heat shock Heat-Shock Response Humans M Phase Cell Cycle Checkpoints MAD2 Mad2 Proteins - genetics Mad2 Proteins - metabolism Mitosis Mitotic progression Spindle Apparatus - metabolism Spindle assembly checkpoint Temperature |
title | Distinct effects of heat shock temperatures on mitotic progression by influencing the spindle assembly checkpoint |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20effects%20of%20heat%20shock%20temperatures%20on%20mitotic%20progression%20by%20influencing%20the%20spindle%20assembly%20checkpoint&rft.jtitle=Experimental%20cell%20research&rft.au=Ota,%20Saki&rft.date=2023-08-15&rft.volume=429&rft.issue=2&rft.spage=113672&rft.epage=113672&rft.pages=113672-113672&rft.artnum=113672&rft.issn=0014-4827&rft.eissn=1090-2422&rft_id=info:doi/10.1016/j.yexcr.2023.113672&rft_dat=%3Cproquest_cross%3E2828363405%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828363405&rft_id=info:pmid/37339729&rft_els_id=S0014482723002197&rfr_iscdi=true |