Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor

Here, we determine how the hydrogen loading (x) of an electrochemical palladium membrane reactor (ePMR) varies with electrochemical conditions (e.g., applied current density, electrolyte concentration). We detail how x influences the thermodynamic driving force of an ePMR. These studies are accompli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2023-07, Vol.145 (26), p.14316-14323
Hauptverfasser: Hunt, Camden, Kurimoto, Aiko, Wood, Georgia, LeSage, Natalie, Peterson, Madeline, Luginbuhl, Benjamin R., Horner, Oliver, Issinski, Sergey, Berlinguette, Curtis P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14323
container_issue 26
container_start_page 14316
container_title Journal of the American Chemical Society
container_volume 145
creator Hunt, Camden
Kurimoto, Aiko
Wood, Georgia
LeSage, Natalie
Peterson, Madeline
Luginbuhl, Benjamin R.
Horner, Oliver
Issinski, Sergey
Berlinguette, Curtis P.
description Here, we determine how the hydrogen loading (x) of an electrochemical palladium membrane reactor (ePMR) varies with electrochemical conditions (e.g., applied current density, electrolyte concentration). We detail how x influences the thermodynamic driving force of an ePMR. These studies are accomplished by measuring the fugacity (P) of hydrogen desorbing from the palladium–hydrogen membrane and subsequently relating P to pressure–composition isotherms to determine x. We find that x increases with both applied current density and electrolyte concentration, but plateaus at a loading of x ≅ 0.92 in 1.0 M H2SO4 at −200 mA·cm–2. The validity of the fugacity measurements is supported experimentally and computationally by: (a) electrochemical hydrogen permeation studies; and (b) a palladium–hydrogen porous flow finite element analysis (FEA) model. Both (a) and (b) agree with the fugacity measurements on the following x-dependent properties of the palladium–hydrogen system during electrolysis: (i) the onset for spontaneous hydrogen desorption; (ii) the point of steady-state hydrogen loading; and (iii) the function describing hydrogen desorption between (i) and (ii). We proceed to detail how x defines the free energy of palladium–hydrogen alloy formation (ΔG(x)PdH), which is a descriptor for the thermodynamic driving force of hydrogenation at the PdH x surface of an ePMR. A maximum value ΔG PdH of 11 kJ·mol–1 is observed, suggesting that an ePMR is capable of driving endergonic hydrogenation reactions. We empirically demonstrate this capability by reducing carbon dioxide to formate (ΔG CO2/HCO2H = 3.4 kJ·mol–1) at ambient conditions and neutral pH.
doi_str_mv 10.1021/jacs.3c02839
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828361438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2828361438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a324t-bd2ea32b5971de073f9e5597f32ad9cb2e3578369d5bd63642ee1e3fc3367c33</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMSOPDKT4I3GSsaoKRQIhoSKxRY59Ka4Su9jJ0H-PqxZYWHy-03vv3T0IXVMypYTR-41UYcoVYQUvT9CYZowkGWXiFI0JISzJC8FH6CKETUxTVtBzNOI5T2mWijH6WFgNfu2sUXi5096twcreOItlj2ddbcD2eO6sNvtiwO_B2DWWFi9aUL136hM6o2SLX6CrvbSA30Cq3vlLdNbINsDVMU7Q6mGxmi-T59fHp_nsOZGcpX1SawbxV2dlTjWQnDclZDFpOJO6VDUDnuUFF6XOai24SBkABd4ozkUenwm6PdhuvfsaIPRVZ4KCto2ruCFUrIhcBE15EaV3B6nyLgQPTbX1ppN-V1FS7VFWe5TVEWWU3xydh7oD_Sv-Yfc3et-1cYO38c7_vb4BeuJ9EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2828361438</pqid></control><display><type>article</type><title>Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor</title><source>ACS Publications</source><creator>Hunt, Camden ; Kurimoto, Aiko ; Wood, Georgia ; LeSage, Natalie ; Peterson, Madeline ; Luginbuhl, Benjamin R. ; Horner, Oliver ; Issinski, Sergey ; Berlinguette, Curtis P.</creator><creatorcontrib>Hunt, Camden ; Kurimoto, Aiko ; Wood, Georgia ; LeSage, Natalie ; Peterson, Madeline ; Luginbuhl, Benjamin R. ; Horner, Oliver ; Issinski, Sergey ; Berlinguette, Curtis P.</creatorcontrib><description>Here, we determine how the hydrogen loading (x) of an electrochemical palladium membrane reactor (ePMR) varies with electrochemical conditions (e.g., applied current density, electrolyte concentration). We detail how x influences the thermodynamic driving force of an ePMR. These studies are accomplished by measuring the fugacity (P) of hydrogen desorbing from the palladium–hydrogen membrane and subsequently relating P to pressure–composition isotherms to determine x. We find that x increases with both applied current density and electrolyte concentration, but plateaus at a loading of x ≅ 0.92 in 1.0 M H2SO4 at −200 mA·cm–2. The validity of the fugacity measurements is supported experimentally and computationally by: (a) electrochemical hydrogen permeation studies; and (b) a palladium–hydrogen porous flow finite element analysis (FEA) model. Both (a) and (b) agree with the fugacity measurements on the following x-dependent properties of the palladium–hydrogen system during electrolysis: (i) the onset for spontaneous hydrogen desorption; (ii) the point of steady-state hydrogen loading; and (iii) the function describing hydrogen desorption between (i) and (ii). We proceed to detail how x defines the free energy of palladium–hydrogen alloy formation (ΔG(x)PdH), which is a descriptor for the thermodynamic driving force of hydrogenation at the PdH x surface of an ePMR. A maximum value ΔG PdH of 11 kJ·mol–1 is observed, suggesting that an ePMR is capable of driving endergonic hydrogenation reactions. We empirically demonstrate this capability by reducing carbon dioxide to formate (ΔG CO2/HCO2H = 3.4 kJ·mol–1) at ambient conditions and neutral pH.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.3c02839</identifier><identifier>PMID: 37341546</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2023-07, Vol.145 (26), p.14316-14323</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a324t-bd2ea32b5971de073f9e5597f32ad9cb2e3578369d5bd63642ee1e3fc3367c33</citedby><cites>FETCH-LOGICAL-a324t-bd2ea32b5971de073f9e5597f32ad9cb2e3578369d5bd63642ee1e3fc3367c33</cites><orcidid>0000-0001-6875-849X ; 0000-0002-2158-7731</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.3c02839$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.3c02839$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37341546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hunt, Camden</creatorcontrib><creatorcontrib>Kurimoto, Aiko</creatorcontrib><creatorcontrib>Wood, Georgia</creatorcontrib><creatorcontrib>LeSage, Natalie</creatorcontrib><creatorcontrib>Peterson, Madeline</creatorcontrib><creatorcontrib>Luginbuhl, Benjamin R.</creatorcontrib><creatorcontrib>Horner, Oliver</creatorcontrib><creatorcontrib>Issinski, Sergey</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><title>Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Here, we determine how the hydrogen loading (x) of an electrochemical palladium membrane reactor (ePMR) varies with electrochemical conditions (e.g., applied current density, electrolyte concentration). We detail how x influences the thermodynamic driving force of an ePMR. These studies are accomplished by measuring the fugacity (P) of hydrogen desorbing from the palladium–hydrogen membrane and subsequently relating P to pressure–composition isotherms to determine x. We find that x increases with both applied current density and electrolyte concentration, but plateaus at a loading of x ≅ 0.92 in 1.0 M H2SO4 at −200 mA·cm–2. The validity of the fugacity measurements is supported experimentally and computationally by: (a) electrochemical hydrogen permeation studies; and (b) a palladium–hydrogen porous flow finite element analysis (FEA) model. Both (a) and (b) agree with the fugacity measurements on the following x-dependent properties of the palladium–hydrogen system during electrolysis: (i) the onset for spontaneous hydrogen desorption; (ii) the point of steady-state hydrogen loading; and (iii) the function describing hydrogen desorption between (i) and (ii). We proceed to detail how x defines the free energy of palladium–hydrogen alloy formation (ΔG(x)PdH), which is a descriptor for the thermodynamic driving force of hydrogenation at the PdH x surface of an ePMR. A maximum value ΔG PdH of 11 kJ·mol–1 is observed, suggesting that an ePMR is capable of driving endergonic hydrogenation reactions. We empirically demonstrate this capability by reducing carbon dioxide to formate (ΔG CO2/HCO2H = 3.4 kJ·mol–1) at ambient conditions and neutral pH.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMSOPDKT4I3GSsaoKRQIhoSKxRY59Ka4Su9jJ0H-PqxZYWHy-03vv3T0IXVMypYTR-41UYcoVYQUvT9CYZowkGWXiFI0JISzJC8FH6CKETUxTVtBzNOI5T2mWijH6WFgNfu2sUXi5096twcreOItlj2ddbcD2eO6sNvtiwO_B2DWWFi9aUL136hM6o2SLX6CrvbSA30Cq3vlLdNbINsDVMU7Q6mGxmi-T59fHp_nsOZGcpX1SawbxV2dlTjWQnDclZDFpOJO6VDUDnuUFF6XOai24SBkABd4ozkUenwm6PdhuvfsaIPRVZ4KCto2ruCFUrIhcBE15EaV3B6nyLgQPTbX1ppN-V1FS7VFWe5TVEWWU3xydh7oD_Sv-Yfc3et-1cYO38c7_vb4BeuJ9EA</recordid><startdate>20230705</startdate><enddate>20230705</enddate><creator>Hunt, Camden</creator><creator>Kurimoto, Aiko</creator><creator>Wood, Georgia</creator><creator>LeSage, Natalie</creator><creator>Peterson, Madeline</creator><creator>Luginbuhl, Benjamin R.</creator><creator>Horner, Oliver</creator><creator>Issinski, Sergey</creator><creator>Berlinguette, Curtis P.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6875-849X</orcidid><orcidid>https://orcid.org/0000-0002-2158-7731</orcidid></search><sort><creationdate>20230705</creationdate><title>Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor</title><author>Hunt, Camden ; Kurimoto, Aiko ; Wood, Georgia ; LeSage, Natalie ; Peterson, Madeline ; Luginbuhl, Benjamin R. ; Horner, Oliver ; Issinski, Sergey ; Berlinguette, Curtis P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a324t-bd2ea32b5971de073f9e5597f32ad9cb2e3578369d5bd63642ee1e3fc3367c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunt, Camden</creatorcontrib><creatorcontrib>Kurimoto, Aiko</creatorcontrib><creatorcontrib>Wood, Georgia</creatorcontrib><creatorcontrib>LeSage, Natalie</creatorcontrib><creatorcontrib>Peterson, Madeline</creatorcontrib><creatorcontrib>Luginbuhl, Benjamin R.</creatorcontrib><creatorcontrib>Horner, Oliver</creatorcontrib><creatorcontrib>Issinski, Sergey</creatorcontrib><creatorcontrib>Berlinguette, Curtis P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunt, Camden</au><au>Kurimoto, Aiko</au><au>Wood, Georgia</au><au>LeSage, Natalie</au><au>Peterson, Madeline</au><au>Luginbuhl, Benjamin R.</au><au>Horner, Oliver</au><au>Issinski, Sergey</au><au>Berlinguette, Curtis P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2023-07-05</date><risdate>2023</risdate><volume>145</volume><issue>26</issue><spage>14316</spage><epage>14323</epage><pages>14316-14323</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Here, we determine how the hydrogen loading (x) of an electrochemical palladium membrane reactor (ePMR) varies with electrochemical conditions (e.g., applied current density, electrolyte concentration). We detail how x influences the thermodynamic driving force of an ePMR. These studies are accomplished by measuring the fugacity (P) of hydrogen desorbing from the palladium–hydrogen membrane and subsequently relating P to pressure–composition isotherms to determine x. We find that x increases with both applied current density and electrolyte concentration, but plateaus at a loading of x ≅ 0.92 in 1.0 M H2SO4 at −200 mA·cm–2. The validity of the fugacity measurements is supported experimentally and computationally by: (a) electrochemical hydrogen permeation studies; and (b) a palladium–hydrogen porous flow finite element analysis (FEA) model. Both (a) and (b) agree with the fugacity measurements on the following x-dependent properties of the palladium–hydrogen system during electrolysis: (i) the onset for spontaneous hydrogen desorption; (ii) the point of steady-state hydrogen loading; and (iii) the function describing hydrogen desorption between (i) and (ii). We proceed to detail how x defines the free energy of palladium–hydrogen alloy formation (ΔG(x)PdH), which is a descriptor for the thermodynamic driving force of hydrogenation at the PdH x surface of an ePMR. A maximum value ΔG PdH of 11 kJ·mol–1 is observed, suggesting that an ePMR is capable of driving endergonic hydrogenation reactions. We empirically demonstrate this capability by reducing carbon dioxide to formate (ΔG CO2/HCO2H = 3.4 kJ·mol–1) at ambient conditions and neutral pH.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37341546</pmid><doi>10.1021/jacs.3c02839</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6875-849X</orcidid><orcidid>https://orcid.org/0000-0002-2158-7731</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2023-07, Vol.145 (26), p.14316-14323
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_2828361438
source ACS Publications
title Endergonic Hydrogenation at Ambient Conditions Using an Electrochemical Membrane Reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A43%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Endergonic%20Hydrogenation%20at%20Ambient%20Conditions%20Using%20an%20Electrochemical%20Membrane%20Reactor&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hunt,%20Camden&rft.date=2023-07-05&rft.volume=145&rft.issue=26&rft.spage=14316&rft.epage=14323&rft.pages=14316-14323&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.3c02839&rft_dat=%3Cproquest_cross%3E2828361438%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2828361438&rft_id=info:pmid/37341546&rfr_iscdi=true