Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives
The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blend...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-08, Vol.35 (31), p.e2211100-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | e2211100 |
container_title | Advanced materials (Weinheim) |
container_volume | 35 |
creator | Chen, Lu Liu, Te‐Huan Wang, Xiangze Wang, Yandong Cui, Xiwei Yan, Qingwei Lv, Le Ying, Junfeng Gao, Jingyao Han, Meng Yu, Jinhong Song, Chengyi Gao, Jinwei Sun, Rong Xue, Chen Jiang, Nan Deng, Tao Nishimura, Kazuhito Yang, Ronggui Lin, Cheng‐Te Dai, Wen |
description | The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA.
2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart. |
doi_str_mv | 10.1002/adma.202211100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828361057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845000161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFK0cUiQuXbMeO7djH1ZYWpLZIUM7RJJlQFydZ7GTR3niEPiNPgqtti8SF04ylbz555mfsNYclBxAn2Pa4FCAE5-n9jC24EjyXYNVztgBbqNxqaQ7ZUYy3AGA16BfssNBWWLBmwborwvD71931DY2BJtegz1If-lTX49DOzeS2btplX5zfUsiucBg7j98pZhizz-SGbgwN9TRMMXNDdo6bZDtz3rvhW7Zqbyi6LcWX7KBDH-nVQz1mX8_eX68_5Befzj-uVxd5U5QF5KqFlhtVI0rVlLY2wnJdl1ZyU0hMG2JZA5DUsrRGKIN1IbVphLRCaeRdccze7b2bMP6YKU5V72JD3uNA4xwrYYQpNAdVJvTtP-jtOIch_S5RUqVjcc0TtdxTTRhjDNRVm-B6DLuKQ3WfQHWfQPWUQBp486Cd657aJ_zx5Amwe-Cn87T7j65anV6u_sr_ANp2krE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845000161</pqid></control><display><type>article</type><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</creator><creatorcontrib>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</creatorcontrib><description>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA.
2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211100</identifier><identifier>PMID: 36929098</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Adhesives ; Ag nanoflakes ; Chemical synthesis ; Conductivity ; Crystal defects ; Fillers ; Heat conductivity ; Heat transfer ; interfacial heat transfer ; Materials science ; Metal foils ; Microelectronics ; Performance evaluation ; Thermal conductivity ; thermal interface materials ; thermal percolation ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2023-08, Vol.35 (31), p.e2211100-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</citedby><cites>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</cites><orcidid>0000-0002-7090-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36929098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Te‐Huan</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Cui, Xiwei</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Song, Chengyi</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Xue, Chen</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lin, Cheng‐Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA.
2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</description><subject>2D materials</subject><subject>Adhesives</subject><subject>Ag nanoflakes</subject><subject>Chemical synthesis</subject><subject>Conductivity</subject><subject>Crystal defects</subject><subject>Fillers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>interfacial heat transfer</subject><subject>Materials science</subject><subject>Metal foils</subject><subject>Microelectronics</subject><subject>Performance evaluation</subject><subject>Thermal conductivity</subject><subject>thermal interface materials</subject><subject>thermal percolation</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFK0cUiQuXbMeO7djH1ZYWpLZIUM7RJJlQFydZ7GTR3niEPiNPgqtti8SF04ylbz555mfsNYclBxAn2Pa4FCAE5-n9jC24EjyXYNVztgBbqNxqaQ7ZUYy3AGA16BfssNBWWLBmwborwvD71931DY2BJtegz1If-lTX49DOzeS2btplX5zfUsiucBg7j98pZhizz-SGbgwN9TRMMXNDdo6bZDtz3rvhW7Zqbyi6LcWX7KBDH-nVQz1mX8_eX68_5Befzj-uVxd5U5QF5KqFlhtVI0rVlLY2wnJdl1ZyU0hMG2JZA5DUsrRGKIN1IbVphLRCaeRdccze7b2bMP6YKU5V72JD3uNA4xwrYYQpNAdVJvTtP-jtOIch_S5RUqVjcc0TtdxTTRhjDNRVm-B6DLuKQ3WfQHWfQPWUQBp486Cd657aJ_zx5Amwe-Cn87T7j65anV6u_sr_ANp2krE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Chen, Lu</creator><creator>Liu, Te‐Huan</creator><creator>Wang, Xiangze</creator><creator>Wang, Yandong</creator><creator>Cui, Xiwei</creator><creator>Yan, Qingwei</creator><creator>Lv, Le</creator><creator>Ying, Junfeng</creator><creator>Gao, Jingyao</creator><creator>Han, Meng</creator><creator>Yu, Jinhong</creator><creator>Song, Chengyi</creator><creator>Gao, Jinwei</creator><creator>Sun, Rong</creator><creator>Xue, Chen</creator><creator>Jiang, Nan</creator><creator>Deng, Tao</creator><creator>Nishimura, Kazuhito</creator><creator>Yang, Ronggui</creator><creator>Lin, Cheng‐Te</creator><creator>Dai, Wen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></search><sort><creationdate>20230801</creationdate><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><author>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D materials</topic><topic>Adhesives</topic><topic>Ag nanoflakes</topic><topic>Chemical synthesis</topic><topic>Conductivity</topic><topic>Crystal defects</topic><topic>Fillers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>interfacial heat transfer</topic><topic>Materials science</topic><topic>Metal foils</topic><topic>Microelectronics</topic><topic>Performance evaluation</topic><topic>Thermal conductivity</topic><topic>thermal interface materials</topic><topic>thermal percolation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Te‐Huan</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Cui, Xiwei</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Song, Chengyi</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Xue, Chen</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lin, Cheng‐Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lu</au><au>Liu, Te‐Huan</au><au>Wang, Xiangze</au><au>Wang, Yandong</au><au>Cui, Xiwei</au><au>Yan, Qingwei</au><au>Lv, Le</au><au>Ying, Junfeng</au><au>Gao, Jingyao</au><au>Han, Meng</au><au>Yu, Jinhong</au><au>Song, Chengyi</au><au>Gao, Jinwei</au><au>Sun, Rong</au><au>Xue, Chen</au><au>Jiang, Nan</au><au>Deng, Tao</au><au>Nishimura, Kazuhito</au><au>Yang, Ronggui</au><au>Lin, Cheng‐Te</au><au>Dai, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>31</issue><spage>e2211100</spage><epage>n/a</epage><pages>e2211100-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA.
2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36929098</pmid><doi>10.1002/adma.202211100</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2023-08, Vol.35 (31), p.e2211100-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2828361057 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2D materials Adhesives Ag nanoflakes Chemical synthesis Conductivity Crystal defects Fillers Heat conductivity Heat transfer interfacial heat transfer Materials science Metal foils Microelectronics Performance evaluation Thermal conductivity thermal interface materials thermal percolation Thickness |
title | Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Theoretical%20Thermal%20Conductivity%20Silver%20Nanoflakes%20as%20Reinforcements%20in%20Gap%E2%80%90Filling%20Adhesives&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Lu&rft.date=2023-08-01&rft.volume=35&rft.issue=31&rft.spage=e2211100&rft.epage=n/a&rft.pages=e2211100-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211100&rft_dat=%3Cproquest_cross%3E2845000161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845000161&rft_id=info:pmid/36929098&rfr_iscdi=true |