Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives

The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blend...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2023-08, Vol.35 (31), p.e2211100-n/a
Hauptverfasser: Chen, Lu, Liu, Te‐Huan, Wang, Xiangze, Wang, Yandong, Cui, Xiwei, Yan, Qingwei, Lv, Le, Ying, Junfeng, Gao, Jingyao, Han, Meng, Yu, Jinhong, Song, Chengyi, Gao, Jinwei, Sun, Rong, Xue, Chen, Jiang, Nan, Deng, Tao, Nishimura, Kazuhito, Yang, Ronggui, Lin, Cheng‐Te, Dai, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2211100
container_title Advanced materials (Weinheim)
container_volume 35
creator Chen, Lu
Liu, Te‐Huan
Wang, Xiangze
Wang, Yandong
Cui, Xiwei
Yan, Qingwei
Lv, Le
Ying, Junfeng
Gao, Jingyao
Han, Meng
Yu, Jinhong
Song, Chengyi
Gao, Jinwei
Sun, Rong
Xue, Chen
Jiang, Nan
Deng, Tao
Nishimura, Kazuhito
Yang, Ronggui
Lin, Cheng‐Te
Dai, Wen
description The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA. 2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.
doi_str_mv 10.1002/adma.202211100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2828361057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2845000161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERbeFK0cUiQuXbMeO7djH1ZYWpLZIUM7RJJlQFydZ7GTR3niEPiNPgqtti8SF04ylbz555mfsNYclBxAn2Pa4FCAE5-n9jC24EjyXYNVztgBbqNxqaQ7ZUYy3AGA16BfssNBWWLBmwborwvD71931DY2BJtegz1If-lTX49DOzeS2btplX5zfUsiucBg7j98pZhizz-SGbgwN9TRMMXNDdo6bZDtz3rvhW7Zqbyi6LcWX7KBDH-nVQz1mX8_eX68_5Befzj-uVxd5U5QF5KqFlhtVI0rVlLY2wnJdl1ZyU0hMG2JZA5DUsrRGKIN1IbVphLRCaeRdccze7b2bMP6YKU5V72JD3uNA4xwrYYQpNAdVJvTtP-jtOIch_S5RUqVjcc0TtdxTTRhjDNRVm-B6DLuKQ3WfQHWfQPWUQBp486Cd657aJ_zx5Amwe-Cn87T7j65anV6u_sr_ANp2krE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845000161</pqid></control><display><type>article</type><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</creator><creatorcontrib>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</creatorcontrib><description>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA. 2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202211100</identifier><identifier>PMID: 36929098</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>2D materials ; Adhesives ; Ag nanoflakes ; Chemical synthesis ; Conductivity ; Crystal defects ; Fillers ; Heat conductivity ; Heat transfer ; interfacial heat transfer ; Materials science ; Metal foils ; Microelectronics ; Performance evaluation ; Thermal conductivity ; thermal interface materials ; thermal percolation ; Thickness</subject><ispartof>Advanced materials (Weinheim), 2023-08, Vol.35 (31), p.e2211100-n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</citedby><cites>FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</cites><orcidid>0000-0002-7090-9610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202211100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202211100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36929098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Te‐Huan</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Cui, Xiwei</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Song, Chengyi</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Xue, Chen</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lin, Cheng‐Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA. 2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</description><subject>2D materials</subject><subject>Adhesives</subject><subject>Ag nanoflakes</subject><subject>Chemical synthesis</subject><subject>Conductivity</subject><subject>Crystal defects</subject><subject>Fillers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>interfacial heat transfer</subject><subject>Materials science</subject><subject>Metal foils</subject><subject>Microelectronics</subject><subject>Performance evaluation</subject><subject>Thermal conductivity</subject><subject>thermal interface materials</subject><subject>thermal percolation</subject><subject>Thickness</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERbeFK0cUiQuXbMeO7djH1ZYWpLZIUM7RJJlQFydZ7GTR3niEPiNPgqtti8SF04ylbz555mfsNYclBxAn2Pa4FCAE5-n9jC24EjyXYNVztgBbqNxqaQ7ZUYy3AGA16BfssNBWWLBmwborwvD71931DY2BJtegz1If-lTX49DOzeS2btplX5zfUsiucBg7j98pZhizz-SGbgwN9TRMMXNDdo6bZDtz3rvhW7Zqbyi6LcWX7KBDH-nVQz1mX8_eX68_5Befzj-uVxd5U5QF5KqFlhtVI0rVlLY2wnJdl1ZyU0hMG2JZA5DUsrRGKIN1IbVphLRCaeRdccze7b2bMP6YKU5V72JD3uNA4xwrYYQpNAdVJvTtP-jtOIch_S5RUqVjcc0TtdxTTRhjDNRVm-B6DLuKQ3WfQHWfQPWUQBp486Cd657aJ_zx5Amwe-Cn87T7j65anV6u_sr_ANp2krE</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Chen, Lu</creator><creator>Liu, Te‐Huan</creator><creator>Wang, Xiangze</creator><creator>Wang, Yandong</creator><creator>Cui, Xiwei</creator><creator>Yan, Qingwei</creator><creator>Lv, Le</creator><creator>Ying, Junfeng</creator><creator>Gao, Jingyao</creator><creator>Han, Meng</creator><creator>Yu, Jinhong</creator><creator>Song, Chengyi</creator><creator>Gao, Jinwei</creator><creator>Sun, Rong</creator><creator>Xue, Chen</creator><creator>Jiang, Nan</creator><creator>Deng, Tao</creator><creator>Nishimura, Kazuhito</creator><creator>Yang, Ronggui</creator><creator>Lin, Cheng‐Te</creator><creator>Dai, Wen</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></search><sort><creationdate>20230801</creationdate><title>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</title><author>Chen, Lu ; Liu, Te‐Huan ; Wang, Xiangze ; Wang, Yandong ; Cui, Xiwei ; Yan, Qingwei ; Lv, Le ; Ying, Junfeng ; Gao, Jingyao ; Han, Meng ; Yu, Jinhong ; Song, Chengyi ; Gao, Jinwei ; Sun, Rong ; Xue, Chen ; Jiang, Nan ; Deng, Tao ; Nishimura, Kazuhito ; Yang, Ronggui ; Lin, Cheng‐Te ; Dai, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-5d0d185baa45c79b82916b7941834a110a7b00e464798258ab3468c249256a1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>2D materials</topic><topic>Adhesives</topic><topic>Ag nanoflakes</topic><topic>Chemical synthesis</topic><topic>Conductivity</topic><topic>Crystal defects</topic><topic>Fillers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>interfacial heat transfer</topic><topic>Materials science</topic><topic>Metal foils</topic><topic>Microelectronics</topic><topic>Performance evaluation</topic><topic>Thermal conductivity</topic><topic>thermal interface materials</topic><topic>thermal percolation</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Liu, Te‐Huan</creatorcontrib><creatorcontrib>Wang, Xiangze</creatorcontrib><creatorcontrib>Wang, Yandong</creatorcontrib><creatorcontrib>Cui, Xiwei</creatorcontrib><creatorcontrib>Yan, Qingwei</creatorcontrib><creatorcontrib>Lv, Le</creatorcontrib><creatorcontrib>Ying, Junfeng</creatorcontrib><creatorcontrib>Gao, Jingyao</creatorcontrib><creatorcontrib>Han, Meng</creatorcontrib><creatorcontrib>Yu, Jinhong</creatorcontrib><creatorcontrib>Song, Chengyi</creatorcontrib><creatorcontrib>Gao, Jinwei</creatorcontrib><creatorcontrib>Sun, Rong</creatorcontrib><creatorcontrib>Xue, Chen</creatorcontrib><creatorcontrib>Jiang, Nan</creatorcontrib><creatorcontrib>Deng, Tao</creatorcontrib><creatorcontrib>Nishimura, Kazuhito</creatorcontrib><creatorcontrib>Yang, Ronggui</creatorcontrib><creatorcontrib>Lin, Cheng‐Te</creatorcontrib><creatorcontrib>Dai, Wen</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lu</au><au>Liu, Te‐Huan</au><au>Wang, Xiangze</au><au>Wang, Yandong</au><au>Cui, Xiwei</au><au>Yan, Qingwei</au><au>Lv, Le</au><au>Ying, Junfeng</au><au>Gao, Jingyao</au><au>Han, Meng</au><au>Yu, Jinhong</au><au>Song, Chengyi</au><au>Gao, Jinwei</au><au>Sun, Rong</au><au>Xue, Chen</au><au>Jiang, Nan</au><au>Deng, Tao</au><au>Nishimura, Kazuhito</au><au>Yang, Ronggui</au><au>Lin, Cheng‐Te</au><au>Dai, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>35</volume><issue>31</issue><spage>e2211100</spage><epage>n/a</epage><pages>e2211100-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The rapid development of highly integrated microelectronic devices causes urgent demands for advanced thermally conductive adhesives (TCAs) to solve the interfacial heat‐transfer issue. Due to their natural 2D structure and isotropic thermal conductivity, metal nanoflakes are promising fillers blended with polymer to develop high‐performance TCAs. However, achieving corresponding TCAs with thermal conductivity over 10 W m−1 K−1 at filler content below 30 vol% remains challenging so far. This longstanding bottleneck is mainly attributed to the fact that most current metal nanoflakes are prepared by “bottom‐up” processes (e.g., solution‐based chemical synthesis) and inevitably contain lattice defects or impurities, resulting in lower intrinsic thermal conductivities, only 20–65% of the theoretical value. Here, a “top‐down” strategy by splitting highly purified Ag foil with nanoscale thickness is adopted to prepare 2D Ag nanoflakes with an intrinsic thermal conductivity of 398.2 W m−1 K−1, reaching 93% of the theoretical value. After directly blending with epoxy, the resultant Ag/epoxy exhibits a thermal conductivity of 15.1 W m−1 K−1 at low filler content of 18.6 vol%. Additionally, in practical microelectronic cooling performance evaluations, the interfacial heat‐transfer efficiency of the Ag/epoxy achieves ≈1.4 times that of the state‐of‐the‐art commercial TCA. 2D Ag nanoflakes with intrinsic thermal conductivity (398.2 W m−1 K−1) close to theoretical value are prepared using the “top‐down” method. After directly blending with epoxy (18.6 vol%) without any complex surface modification, hybridization, and structural design, the interfacial heat‐transfer efficiency of the obtained gap‐filling adhesive is ≈1.4 times that of the state‐of‐the‐art counterpart.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36929098</pmid><doi>10.1002/adma.202211100</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7090-9610</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2023-08, Vol.35 (31), p.e2211100-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2828361057
source Wiley Online Library Journals Frontfile Complete
subjects 2D materials
Adhesives
Ag nanoflakes
Chemical synthesis
Conductivity
Crystal defects
Fillers
Heat conductivity
Heat transfer
interfacial heat transfer
Materials science
Metal foils
Microelectronics
Performance evaluation
Thermal conductivity
thermal interface materials
thermal percolation
Thickness
title Near‐Theoretical Thermal Conductivity Silver Nanoflakes as Reinforcements in Gap‐Filling Adhesives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A21%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%E2%80%90Theoretical%20Thermal%20Conductivity%20Silver%20Nanoflakes%20as%20Reinforcements%20in%20Gap%E2%80%90Filling%20Adhesives&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Chen,%20Lu&rft.date=2023-08-01&rft.volume=35&rft.issue=31&rft.spage=e2211100&rft.epage=n/a&rft.pages=e2211100-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202211100&rft_dat=%3Cproquest_cross%3E2845000161%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845000161&rft_id=info:pmid/36929098&rfr_iscdi=true