Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena

Calculation of the flow pattern in a new small homogenising valve design (Stansted, U.K.), able to reach operating pressure as high as 350 MPa , was investigated in the first part of this paper using a Computational Fluid Dynamics method. Numerical simulation results are used in the present paper to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering science 2004-03, Vol.59 (6), p.1285-1294
Hauptverfasser: Floury, Juliane, Legrand, Jack, Desrumaux, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1294
container_issue 6
container_start_page 1285
container_title Chemical engineering science
container_volume 59
creator Floury, Juliane
Legrand, Jack
Desrumaux, Anne
description Calculation of the flow pattern in a new small homogenising valve design (Stansted, U.K.), able to reach operating pressure as high as 350 MPa , was investigated in the first part of this paper using a Computational Fluid Dynamics method. Numerical simulation results are used in the present paper to better understand the emulsification process in the Stansted high-pressure homogeniser. Deformation of drops is supposed to occur in the intense elongational flow caused by the restriction between the piston and the seat of the valve. Deformation may be mainly followed by drop disruption in the narrow valve gap. Break-up probably also occurred in the highly turbulent region, located just at the exit of the gap, and underlined by the numerical investigation. Cavitation and the rate of recoalescence, first assumed from numerical results, are determined thank to experimental methods. Intensities of both phenomena strongly increase with homogenising pressure. Final droplet size of model oil-in-water emulsions is then the result of equilibrium between droplet break-up and recoalescence, which strongly depends on operating pressure.
doi_str_mv 10.1016/j.ces.2003.11.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_28282451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009250904000363</els_id><sourcerecordid>28282451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-631352a4553ffd271ac391842319270194c837dd876b000c42524a2f6b86e13f3</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZu0H6A3XdqbHY1k-Q89JSFNAoH00J6FVh5ntfVKrsZu2W9fmQ3kFuYwDLz3ZubH2GcQJQioL_elQyqlEKoEKIXU79gG2kYVVSX0GdsIIbpCatF9YOdE-zw2DYgNS1fBjkfyxOPALQ_4j8_HCddp5593fEpItCTku3iIzxg8YSr5D5tmfl1ympf-uGr7FKcRZ75NaH8Xy8Rt6HlCF-2I5DA45NMOQzxgsB_Z-8GOhJ9e-gX79f3258198fh093Bz9Vi4Ssq5qBUoLW2ltRqGXjZgneqgraSCTjYCusq1qun7tqm3-Z1s0rKycqi3bY2gBnXBvp5ypxT_LEizOfh8yzjagHEhI9tclYYshJPQpUiUcDBT8gebjgaEWemavcl0zUrXAJhMN3u-vIRbcnYckg3O06tR11Kqds3-dtJh_vSvx2TI-ZVH7zOe2fTRv7HlPx-hjl4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28282451</pqid></control><display><type>article</type><title>Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena</title><source>Access via ScienceDirect (Elsevier)</source><creator>Floury, Juliane ; Legrand, Jack ; Desrumaux, Anne</creator><creatorcontrib>Floury, Juliane ; Legrand, Jack ; Desrumaux, Anne</creatorcontrib><description>Calculation of the flow pattern in a new small homogenising valve design (Stansted, U.K.), able to reach operating pressure as high as 350 MPa , was investigated in the first part of this paper using a Computational Fluid Dynamics method. Numerical simulation results are used in the present paper to better understand the emulsification process in the Stansted high-pressure homogeniser. Deformation of drops is supposed to occur in the intense elongational flow caused by the restriction between the piston and the seat of the valve. Deformation may be mainly followed by drop disruption in the narrow valve gap. Break-up probably also occurred in the highly turbulent region, located just at the exit of the gap, and underlined by the numerical investigation. Cavitation and the rate of recoalescence, first assumed from numerical results, are determined thank to experimental methods. Intensities of both phenomena strongly increase with homogenising pressure. Final droplet size of model oil-in-water emulsions is then the result of equilibrium between droplet break-up and recoalescence, which strongly depends on operating pressure.</description><identifier>ISSN: 0009-2509</identifier><identifier>EISSN: 1873-4405</identifier><identifier>DOI: 10.1016/j.ces.2003.11.025</identifier><identifier>CODEN: CESCAC</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Cavitation ; Chemical engineering ; Coalescence rate ; Dispersion ; Drop ; Exact sciences and technology ; Homogenisation ; Miscellaneous ; Turbulence</subject><ispartof>Chemical engineering science, 2004-03, Vol.59 (6), p.1285-1294</ispartof><rights>2004 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-631352a4553ffd271ac391842319270194c837dd876b000c42524a2f6b86e13f3</citedby><cites>FETCH-LOGICAL-c422t-631352a4553ffd271ac391842319270194c837dd876b000c42524a2f6b86e13f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ces.2003.11.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15622381$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Floury, Juliane</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Desrumaux, Anne</creatorcontrib><title>Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena</title><title>Chemical engineering science</title><description>Calculation of the flow pattern in a new small homogenising valve design (Stansted, U.K.), able to reach operating pressure as high as 350 MPa , was investigated in the first part of this paper using a Computational Fluid Dynamics method. Numerical simulation results are used in the present paper to better understand the emulsification process in the Stansted high-pressure homogeniser. Deformation of drops is supposed to occur in the intense elongational flow caused by the restriction between the piston and the seat of the valve. Deformation may be mainly followed by drop disruption in the narrow valve gap. Break-up probably also occurred in the highly turbulent region, located just at the exit of the gap, and underlined by the numerical investigation. Cavitation and the rate of recoalescence, first assumed from numerical results, are determined thank to experimental methods. Intensities of both phenomena strongly increase with homogenising pressure. Final droplet size of model oil-in-water emulsions is then the result of equilibrium between droplet break-up and recoalescence, which strongly depends on operating pressure.</description><subject>Applied sciences</subject><subject>Cavitation</subject><subject>Chemical engineering</subject><subject>Coalescence rate</subject><subject>Dispersion</subject><subject>Drop</subject><subject>Exact sciences and technology</subject><subject>Homogenisation</subject><subject>Miscellaneous</subject><subject>Turbulence</subject><issn>0009-2509</issn><issn>1873-4405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZu0H6A3XdqbHY1k-Q89JSFNAoH00J6FVh5ntfVKrsZu2W9fmQ3kFuYwDLz3ZubH2GcQJQioL_elQyqlEKoEKIXU79gG2kYVVSX0GdsIIbpCatF9YOdE-zw2DYgNS1fBjkfyxOPALQ_4j8_HCddp5593fEpItCTku3iIzxg8YSr5D5tmfl1ympf-uGr7FKcRZ75NaH8Xy8Rt6HlCF-2I5DA45NMOQzxgsB_Z-8GOhJ9e-gX79f3258198fh093Bz9Vi4Ssq5qBUoLW2ltRqGXjZgneqgraSCTjYCusq1qun7tqm3-Z1s0rKycqi3bY2gBnXBvp5ypxT_LEizOfh8yzjagHEhI9tclYYshJPQpUiUcDBT8gebjgaEWemavcl0zUrXAJhMN3u-vIRbcnYckg3O06tR11Kqds3-dtJh_vSvx2TI-ZVH7zOe2fTRv7HlPx-hjl4</recordid><startdate>20040301</startdate><enddate>20040301</enddate><creator>Floury, Juliane</creator><creator>Legrand, Jack</creator><creator>Desrumaux, Anne</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20040301</creationdate><title>Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena</title><author>Floury, Juliane ; Legrand, Jack ; Desrumaux, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-631352a4553ffd271ac391842319270194c837dd876b000c42524a2f6b86e13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Applied sciences</topic><topic>Cavitation</topic><topic>Chemical engineering</topic><topic>Coalescence rate</topic><topic>Dispersion</topic><topic>Drop</topic><topic>Exact sciences and technology</topic><topic>Homogenisation</topic><topic>Miscellaneous</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Floury, Juliane</creatorcontrib><creatorcontrib>Legrand, Jack</creatorcontrib><creatorcontrib>Desrumaux, Anne</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Chemical engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Floury, Juliane</au><au>Legrand, Jack</au><au>Desrumaux, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena</atitle><jtitle>Chemical engineering science</jtitle><date>2004-03-01</date><risdate>2004</risdate><volume>59</volume><issue>6</issue><spage>1285</spage><epage>1294</epage><pages>1285-1294</pages><issn>0009-2509</issn><eissn>1873-4405</eissn><coden>CESCAC</coden><abstract>Calculation of the flow pattern in a new small homogenising valve design (Stansted, U.K.), able to reach operating pressure as high as 350 MPa , was investigated in the first part of this paper using a Computational Fluid Dynamics method. Numerical simulation results are used in the present paper to better understand the emulsification process in the Stansted high-pressure homogeniser. Deformation of drops is supposed to occur in the intense elongational flow caused by the restriction between the piston and the seat of the valve. Deformation may be mainly followed by drop disruption in the narrow valve gap. Break-up probably also occurred in the highly turbulent region, located just at the exit of the gap, and underlined by the numerical investigation. Cavitation and the rate of recoalescence, first assumed from numerical results, are determined thank to experimental methods. Intensities of both phenomena strongly increase with homogenising pressure. Final droplet size of model oil-in-water emulsions is then the result of equilibrium between droplet break-up and recoalescence, which strongly depends on operating pressure.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ces.2003.11.025</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-2509
ispartof Chemical engineering science, 2004-03, Vol.59 (6), p.1285-1294
issn 0009-2509
1873-4405
language eng
recordid cdi_proquest_miscellaneous_28282451
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Cavitation
Chemical engineering
Coalescence rate
Dispersion
Drop
Exact sciences and technology
Homogenisation
Miscellaneous
Turbulence
title Analysis of a new type of high pressure homogeniser. Part B. study of droplet break-up and recoalescence phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T11%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20new%20type%20of%20high%20pressure%20homogeniser.%20Part%20B.%20study%20of%20droplet%20break-up%20and%20recoalescence%20phenomena&rft.jtitle=Chemical%20engineering%20science&rft.au=Floury,%20Juliane&rft.date=2004-03-01&rft.volume=59&rft.issue=6&rft.spage=1285&rft.epage=1294&rft.pages=1285-1294&rft.issn=0009-2509&rft.eissn=1873-4405&rft.coden=CESCAC&rft_id=info:doi/10.1016/j.ces.2003.11.025&rft_dat=%3Cproquest_cross%3E28282451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28282451&rft_id=info:pmid/&rft_els_id=S0009250904000363&rfr_iscdi=true