Efficient disk-based K-means clustering for relational databases
K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only req...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on knowledge and data engineering 2004-08, Vol.16 (8), p.909-921 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 921 |
---|---|
container_issue | 8 |
container_start_page | 909 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 16 |
creator | Ordonez, C. Omiecinski, E. |
description | K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm. |
doi_str_mv | 10.1109/TKDE.2004.25 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28281103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1318577</ieee_id><sourcerecordid>29229857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBeAIgUQpbGwsEQNiIMXP2NlApTzUSixlthz7GrmkCdjJwL_HUZGQGGC6Hj7Zvudk2SlGM4xRdb1e3i1mBCE2I3wvm2DOZUFwhffTGTFcMMrEYXYU4wYhJIXEk-xm4Zw3Hto-tz6-FbWOYPNlsQXdxtw0Q-wh-PY1d13IAzS6912rm9zqXo82HmcHTjcRTr7nNHu5X6znj8Xq-eFpfrsqDBW8L0RNBGaaSKd5qZ2raWVKIQknIDBxUgiHAIxlVpalsVAjZBMBxiyARohOs4vdve-h-xgg9mrro4Gm0S10Q1SkIqSSXPwPJZEpLZrg5Z8Ql-lnkkoxPn7-i266IaQcoqoIJoywqkzoaodM6GIM4NR78FsdPhVGauxHjf2osR9FeOJnO-4B4IdSnJYQ9AspTYpP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921242496</pqid></control><display><type>article</type><title>Efficient disk-based K-means clustering for relational databases</title><source>IEEE Electronic Library (IEL)</source><creator>Ordonez, C. ; Omiecinski, E.</creator><creatorcontrib>Ordonez, C. ; Omiecinski, E.</creatorcontrib><description>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2004.25</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Cluster analysis ; Clustering ; Clustering algorithms ; Data mining ; disk ; Disks ; K-means ; Machine learning ; Machine learning algorithms ; Management systems ; Partitioning algorithms ; Proposals ; Relational data bases ; Relational databases ; Sampling methods ; Statistics</subject><ispartof>IEEE transactions on knowledge and data engineering, 2004-08, Vol.16 (8), p.909-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</citedby><cites>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1318577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1318577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><title>Efficient disk-based K-means clustering for relational databases</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>disk</subject><subject>Disks</subject><subject>K-means</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Management systems</subject><subject>Partitioning algorithms</subject><subject>Proposals</subject><subject>Relational data bases</subject><subject>Relational databases</subject><subject>Sampling methods</subject><subject>Statistics</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAUBeAIgUQpbGwsEQNiIMXP2NlApTzUSixlthz7GrmkCdjJwL_HUZGQGGC6Hj7Zvudk2SlGM4xRdb1e3i1mBCE2I3wvm2DOZUFwhffTGTFcMMrEYXYU4wYhJIXEk-xm4Zw3Hto-tz6-FbWOYPNlsQXdxtw0Q-wh-PY1d13IAzS6912rm9zqXo82HmcHTjcRTr7nNHu5X6znj8Xq-eFpfrsqDBW8L0RNBGaaSKd5qZ2raWVKIQknIDBxUgiHAIxlVpalsVAjZBMBxiyARohOs4vdve-h-xgg9mrro4Gm0S10Q1SkIqSSXPwPJZEpLZrg5Z8Ql-lnkkoxPn7-i266IaQcoqoIJoywqkzoaodM6GIM4NR78FsdPhVGauxHjf2osR9FeOJnO-4B4IdSnJYQ9AspTYpP</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Ordonez, C.</creator><creator>Omiecinski, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7TB</scope></search><sort><creationdate>20040801</creationdate><title>Efficient disk-based K-means clustering for relational databases</title><author>Ordonez, C. ; Omiecinski, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>disk</topic><topic>Disks</topic><topic>K-means</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Management systems</topic><topic>Partitioning algorithms</topic><topic>Proposals</topic><topic>Relational data bases</topic><topic>Relational databases</topic><topic>Sampling methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ordonez, C.</au><au>Omiecinski, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient disk-based K-means clustering for relational databases</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2004-08-01</date><risdate>2004</risdate><volume>16</volume><issue>8</issue><spage>909</spage><epage>921</epage><pages>909-921</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2004.25</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2004-08, Vol.16 (8), p.909-921 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_miscellaneous_28281103 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithm design and analysis Algorithms Cluster analysis Clustering Clustering algorithms Data mining disk Disks K-means Machine learning Machine learning algorithms Management systems Partitioning algorithms Proposals Relational data bases Relational databases Sampling methods Statistics |
title | Efficient disk-based K-means clustering for relational databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20disk-based%20K-means%20clustering%20for%20relational%20databases&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Ordonez,%20C.&rft.date=2004-08-01&rft.volume=16&rft.issue=8&rft.spage=909&rft.epage=921&rft.pages=909-921&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2004.25&rft_dat=%3Cproquest_RIE%3E29229857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921242496&rft_id=info:pmid/&rft_ieee_id=1318577&rfr_iscdi=true |