Efficient disk-based K-means clustering for relational databases

K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only req...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering 2004-08, Vol.16 (8), p.909-921
Hauptverfasser: Ordonez, C., Omiecinski, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 921
container_issue 8
container_start_page 909
container_title IEEE transactions on knowledge and data engineering
container_volume 16
creator Ordonez, C.
Omiecinski, E.
description K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.
doi_str_mv 10.1109/TKDE.2004.25
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28281103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1318577</ieee_id><sourcerecordid>29229857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</originalsourceid><addsrcrecordid>eNqF0TtPwzAUBeAIgUQpbGwsEQNiIMXP2NlApTzUSixlthz7GrmkCdjJwL_HUZGQGGC6Hj7Zvudk2SlGM4xRdb1e3i1mBCE2I3wvm2DOZUFwhffTGTFcMMrEYXYU4wYhJIXEk-xm4Zw3Hto-tz6-FbWOYPNlsQXdxtw0Q-wh-PY1d13IAzS6912rm9zqXo82HmcHTjcRTr7nNHu5X6znj8Xq-eFpfrsqDBW8L0RNBGaaSKd5qZ2raWVKIQknIDBxUgiHAIxlVpalsVAjZBMBxiyARohOs4vdve-h-xgg9mrro4Gm0S10Q1SkIqSSXPwPJZEpLZrg5Z8Ql-lnkkoxPn7-i266IaQcoqoIJoywqkzoaodM6GIM4NR78FsdPhVGauxHjf2osR9FeOJnO-4B4IdSnJYQ9AspTYpP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>921242496</pqid></control><display><type>article</type><title>Efficient disk-based K-means clustering for relational databases</title><source>IEEE Electronic Library (IEL)</source><creator>Ordonez, C. ; Omiecinski, E.</creator><creatorcontrib>Ordonez, C. ; Omiecinski, E.</creatorcontrib><description>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2004.25</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Cluster analysis ; Clustering ; Clustering algorithms ; Data mining ; disk ; Disks ; K-means ; Machine learning ; Machine learning algorithms ; Management systems ; Partitioning algorithms ; Proposals ; Relational data bases ; Relational databases ; Sampling methods ; Statistics</subject><ispartof>IEEE transactions on knowledge and data engineering, 2004-08, Vol.16 (8), p.909-921</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</citedby><cites>FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1318577$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/1318577$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><title>Efficient disk-based K-means clustering for relational databases</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Data mining</subject><subject>disk</subject><subject>Disks</subject><subject>K-means</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Management systems</subject><subject>Partitioning algorithms</subject><subject>Proposals</subject><subject>Relational data bases</subject><subject>Relational databases</subject><subject>Sampling methods</subject><subject>Statistics</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0TtPwzAUBeAIgUQpbGwsEQNiIMXP2NlApTzUSixlthz7GrmkCdjJwL_HUZGQGGC6Hj7Zvudk2SlGM4xRdb1e3i1mBCE2I3wvm2DOZUFwhffTGTFcMMrEYXYU4wYhJIXEk-xm4Zw3Hto-tz6-FbWOYPNlsQXdxtw0Q-wh-PY1d13IAzS6912rm9zqXo82HmcHTjcRTr7nNHu5X6znj8Xq-eFpfrsqDBW8L0RNBGaaSKd5qZ2raWVKIQknIDBxUgiHAIxlVpalsVAjZBMBxiyARohOs4vdve-h-xgg9mrro4Gm0S10Q1SkIqSSXPwPJZEpLZrg5Z8Ql-lnkkoxPn7-i266IaQcoqoIJoywqkzoaodM6GIM4NR78FsdPhVGauxHjf2osR9FeOJnO-4B4IdSnJYQ9AspTYpP</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Ordonez, C.</creator><creator>Omiecinski, E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>7TB</scope></search><sort><creationdate>20040801</creationdate><title>Efficient disk-based K-means clustering for relational databases</title><author>Ordonez, C. ; Omiecinski, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-7b2714a28fa56affb39c678252e712f877f0eecd4d866cdeb00d39ce44deea003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Data mining</topic><topic>disk</topic><topic>Disks</topic><topic>K-means</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Management systems</topic><topic>Partitioning algorithms</topic><topic>Proposals</topic><topic>Relational data bases</topic><topic>Relational databases</topic><topic>Sampling methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ordonez, C.</creatorcontrib><creatorcontrib>Omiecinski, E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ordonez, C.</au><au>Omiecinski, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient disk-based K-means clustering for relational databases</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2004-08-01</date><risdate>2004</risdate><volume>16</volume><issue>8</issue><spage>909</spage><epage>921</epage><pages>909-921</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>K-means is one of the most popular clustering algorithms. We introduce an efficient disk-based implementation of K-means. The proposed algorithm is designed to work inside a relational database management system. It can cluster large data sets having very high dimensionality. In general, it only requires three scans over the data set. It is optimized to perform heavy disk I/O and its memory requirements are low. Its parameters are easy to set. An extensive experimental section evaluates quality of results and performance. The proposed algorithm is compared against the Standard K-means algorithm as well as the Scalable K-means algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2004.25</doi><tpages>13</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2004-08, Vol.16 (8), p.909-921
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_28281103
source IEEE Electronic Library (IEL)
subjects Algorithm design and analysis
Algorithms
Cluster analysis
Clustering
Clustering algorithms
Data mining
disk
Disks
K-means
Machine learning
Machine learning algorithms
Management systems
Partitioning algorithms
Proposals
Relational data bases
Relational databases
Sampling methods
Statistics
title Efficient disk-based K-means clustering for relational databases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20disk-based%20K-means%20clustering%20for%20relational%20databases&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Ordonez,%20C.&rft.date=2004-08-01&rft.volume=16&rft.issue=8&rft.spage=909&rft.epage=921&rft.pages=909-921&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2004.25&rft_dat=%3Cproquest_RIE%3E29229857%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=921242496&rft_id=info:pmid/&rft_ieee_id=1318577&rfr_iscdi=true