Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential

Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2023-09, Vol.44 (17-18), p.1369-1376
Hauptverfasser: Dutta, Amitava, Santra, Apurba Kumar, Ganguly, Ranjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1376
container_issue 17-18
container_start_page 1369
container_title Electrophoresis
container_volume 44
creator Dutta, Amitava
Santra, Apurba Kumar
Ganguly, Ranjan
description Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C /C ) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C /C increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).
doi_str_mv 10.1002/elps.202300033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827666194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864085571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</originalsourceid><addsrcrecordid>eNpdkctu1jAUhC0Eoj-FLUtkiQ2b_Pgax0tUlYtUwaasI8c-bl05drAdVeVheFYSWorE6pzFNzPSDEKvKTlSQth7iEs9MsI4IYTzJ-hAJWMd6wf-FB0IVbwjA5cn6EWtNxsitBDP0QlXnDM6kAP6dQnzAsW0tQC-KsYFSA37bNca0hXOHk8hdyaZeNcAh4QNnoMt2cc1uGCxvTYpQcQOTNwFt6Fd45RT9xVuW07BJAwRbCv5j4HNqQYHZUfbv-TOwQLJ7dE_oRm85Lb9wcSX6Jk3scKrh3uKvn88vzz73F18-_Tl7MNFZ5kaWkeVJoJ5owAmR6V0ShBKDfPeDVx54FRLzZzWSjmmnRis55ROtO8nIbW0_BS9u_ddSv6xQm3jHKqFGE2CvNaRDUz1fU-12NC3_6E3eS1bQTvVCzJIqehGHe-prataC_hxKWE25W6kZNyXG_flxsflNsGbB9t1msE94n-n4r8BROmX2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864085571</pqid></control><display><type>article</type><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><source>Access via Wiley Online Library</source><creator>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</creator><creatorcontrib>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</creatorcontrib><description>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C /C ) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C /C increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202300033</identifier><identifier>PMID: 37332180</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electric fields ; Electrolytes ; Microchannels ; Microfluidics ; Numerical analysis ; Ohmic dissipation ; Pseudoplasticity ; Resistance heating ; Rheological properties ; Rheology ; Temperature dependence ; Transport equations ; Zeta potential</subject><ispartof>Electrophoresis, 2023-09, Vol.44 (17-18), p.1369-1376</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</cites><orcidid>0000-0003-4968-6683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37332180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Amitava</creatorcontrib><creatorcontrib>Santra, Apurba Kumar</creatorcontrib><creatorcontrib>Ganguly, Ranjan</creatorcontrib><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C /C ) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C /C increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</description><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Numerical analysis</subject><subject>Ohmic dissipation</subject><subject>Pseudoplasticity</subject><subject>Resistance heating</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Temperature dependence</subject><subject>Transport equations</subject><subject>Zeta potential</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1jAUhC0Eoj-FLUtkiQ2b_Pgax0tUlYtUwaasI8c-bl05drAdVeVheFYSWorE6pzFNzPSDEKvKTlSQth7iEs9MsI4IYTzJ-hAJWMd6wf-FB0IVbwjA5cn6EWtNxsitBDP0QlXnDM6kAP6dQnzAsW0tQC-KsYFSA37bNca0hXOHk8hdyaZeNcAh4QNnoMt2cc1uGCxvTYpQcQOTNwFt6Fd45RT9xVuW07BJAwRbCv5j4HNqQYHZUfbv-TOwQLJ7dE_oRm85Lb9wcSX6Jk3scKrh3uKvn88vzz73F18-_Tl7MNFZ5kaWkeVJoJ5owAmR6V0ShBKDfPeDVx54FRLzZzWSjmmnRis55ROtO8nIbW0_BS9u_ddSv6xQm3jHKqFGE2CvNaRDUz1fU-12NC3_6E3eS1bQTvVCzJIqehGHe-prataC_hxKWE25W6kZNyXG_flxsflNsGbB9t1msE94n-n4r8BROmX2Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Dutta, Amitava</creator><creator>Santra, Apurba Kumar</creator><creator>Ganguly, Ranjan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4968-6683</orcidid></search><sort><creationdate>20230901</creationdate><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><author>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Numerical analysis</topic><topic>Ohmic dissipation</topic><topic>Pseudoplasticity</topic><topic>Resistance heating</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Temperature dependence</topic><topic>Transport equations</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Amitava</creatorcontrib><creatorcontrib>Santra, Apurba Kumar</creatorcontrib><creatorcontrib>Ganguly, Ranjan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Amitava</au><au>Santra, Apurba Kumar</au><au>Ganguly, Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>44</volume><issue>17-18</issue><spage>1369</spage><epage>1376</epage><pages>1369-1376</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C /C ) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C /C increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37332180</pmid><doi>10.1002/elps.202300033</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4968-6683</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2023-09, Vol.44 (17-18), p.1369-1376
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_2827666194
source Access via Wiley Online Library
subjects Electric fields
Electrolytes
Microchannels
Microfluidics
Numerical analysis
Ohmic dissipation
Pseudoplasticity
Resistance heating
Rheological properties
Rheology
Temperature dependence
Transport equations
Zeta potential
title Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20gradient%20focusing%20of%20bio-analyte%20in%20a%20microfluidic%20channel%20dealing%20with%20non-Newtonian%20electrolyte%20considering%20temperature-dependent%20zeta%20potential&rft.jtitle=Electrophoresis&rft.au=Dutta,%20Amitava&rft.date=2023-09-01&rft.volume=44&rft.issue=17-18&rft.spage=1369&rft.epage=1376&rft.pages=1369-1376&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202300033&rft_dat=%3Cproquest_cross%3E2864085571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864085571&rft_id=info:pmid/37332180&rfr_iscdi=true