Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential
Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-ba...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2023-09, Vol.44 (17-18), p.1369-1376 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1376 |
---|---|
container_issue | 17-18 |
container_start_page | 1369 |
container_title | Electrophoresis |
container_volume | 44 |
creator | Dutta, Amitava Santra, Apurba Kumar Ganguly, Ranjan |
description | Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C
/C
) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C
/C
increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime). |
doi_str_mv | 10.1002/elps.202300033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827666194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864085571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</originalsourceid><addsrcrecordid>eNpdkctu1jAUhC0Eoj-FLUtkiQ2b_Pgax0tUlYtUwaasI8c-bl05drAdVeVheFYSWorE6pzFNzPSDEKvKTlSQth7iEs9MsI4IYTzJ-hAJWMd6wf-FB0IVbwjA5cn6EWtNxsitBDP0QlXnDM6kAP6dQnzAsW0tQC-KsYFSA37bNca0hXOHk8hdyaZeNcAh4QNnoMt2cc1uGCxvTYpQcQOTNwFt6Fd45RT9xVuW07BJAwRbCv5j4HNqQYHZUfbv-TOwQLJ7dE_oRm85Lb9wcSX6Jk3scKrh3uKvn88vzz73F18-_Tl7MNFZ5kaWkeVJoJ5owAmR6V0ShBKDfPeDVx54FRLzZzWSjmmnRis55ROtO8nIbW0_BS9u_ddSv6xQm3jHKqFGE2CvNaRDUz1fU-12NC3_6E3eS1bQTvVCzJIqehGHe-prataC_hxKWE25W6kZNyXG_flxsflNsGbB9t1msE94n-n4r8BROmX2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864085571</pqid></control><display><type>article</type><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><source>Access via Wiley Online Library</source><creator>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</creator><creatorcontrib>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</creatorcontrib><description>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C
/C
) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C
/C
increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.202300033</identifier><identifier>PMID: 37332180</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Electric fields ; Electrolytes ; Microchannels ; Microfluidics ; Numerical analysis ; Ohmic dissipation ; Pseudoplasticity ; Resistance heating ; Rheological properties ; Rheology ; Temperature dependence ; Transport equations ; Zeta potential</subject><ispartof>Electrophoresis, 2023-09, Vol.44 (17-18), p.1369-1376</ispartof><rights>2023 Wiley-VCH GmbH.</rights><rights>2023 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</cites><orcidid>0000-0003-4968-6683</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37332180$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dutta, Amitava</creatorcontrib><creatorcontrib>Santra, Apurba Kumar</creatorcontrib><creatorcontrib>Ganguly, Ranjan</creatorcontrib><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C
/C
) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C
/C
increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</description><subject>Electric fields</subject><subject>Electrolytes</subject><subject>Microchannels</subject><subject>Microfluidics</subject><subject>Numerical analysis</subject><subject>Ohmic dissipation</subject><subject>Pseudoplasticity</subject><subject>Resistance heating</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Temperature dependence</subject><subject>Transport equations</subject><subject>Zeta potential</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkctu1jAUhC0Eoj-FLUtkiQ2b_Pgax0tUlYtUwaasI8c-bl05drAdVeVheFYSWorE6pzFNzPSDEKvKTlSQth7iEs9MsI4IYTzJ-hAJWMd6wf-FB0IVbwjA5cn6EWtNxsitBDP0QlXnDM6kAP6dQnzAsW0tQC-KsYFSA37bNca0hXOHk8hdyaZeNcAh4QNnoMt2cc1uGCxvTYpQcQOTNwFt6Fd45RT9xVuW07BJAwRbCv5j4HNqQYHZUfbv-TOwQLJ7dE_oRm85Lb9wcSX6Jk3scKrh3uKvn88vzz73F18-_Tl7MNFZ5kaWkeVJoJ5owAmR6V0ShBKDfPeDVx54FRLzZzWSjmmnRis55ROtO8nIbW0_BS9u_ddSv6xQm3jHKqFGE2CvNaRDUz1fU-12NC3_6E3eS1bQTvVCzJIqehGHe-prataC_hxKWE25W6kZNyXG_flxsflNsGbB9t1msE94n-n4r8BROmX2Q</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Dutta, Amitava</creator><creator>Santra, Apurba Kumar</creator><creator>Ganguly, Ranjan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4968-6683</orcidid></search><sort><creationdate>20230901</creationdate><title>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</title><author>Dutta, Amitava ; Santra, Apurba Kumar ; Ganguly, Ranjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-179042fa7eebd155d74011a2ffd837fe319592d9977d29d48cf311b166b4595c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electric fields</topic><topic>Electrolytes</topic><topic>Microchannels</topic><topic>Microfluidics</topic><topic>Numerical analysis</topic><topic>Ohmic dissipation</topic><topic>Pseudoplasticity</topic><topic>Resistance heating</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Temperature dependence</topic><topic>Transport equations</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dutta, Amitava</creatorcontrib><creatorcontrib>Santra, Apurba Kumar</creatorcontrib><creatorcontrib>Ganguly, Ranjan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dutta, Amitava</au><au>Santra, Apurba Kumar</au><au>Ganguly, Ranjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2023-09-01</date><risdate>2023</risdate><volume>44</volume><issue>17-18</issue><spage>1369</spage><epage>1376</epage><pages>1369-1376</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>Temperature gradient focusing (TGF) relies on establishing a precise balance between the electrophoretic motility of a target analyte and the advective flow of the background electrolyte (BGE) to locally concentrate the analyte in a microfluidic configuration. This paper presents a finite-element-based numerical analysis where the coupled electric field and the transport equations are solved to describe the effects of the shear-dependent apparent viscosity of a non-Newtonian BGE on the localized concentration buildup of a charged bio-sample inside a microchannel by TGF via Joule heating. Effects of the temperature-dependent nature of the wall zeta potential and the flow behavior index (n) of BGE on the flow, thermal, and species concentration profiles inside the microchannel have been investigated. Study using a fluorescein-Na analyte sample shows that the maximum normalized analyte concentration (C
/C
) reduces as the zeta potential increases linearly with temperature. The maximum concentration enhancement is achieved when the BGE displays the Newtonian rheology. For example, C
/C
increases 134- to 280-fold when n is increased from 0.8 to 1 (pseudoplastic regime) and again reduces to 190-fold when n increases further from 1 to 1.2 (dilatant regime).</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>37332180</pmid><doi>10.1002/elps.202300033</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4968-6683</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2023-09, Vol.44 (17-18), p.1369-1376 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_2827666194 |
source | Access via Wiley Online Library |
subjects | Electric fields Electrolytes Microchannels Microfluidics Numerical analysis Ohmic dissipation Pseudoplasticity Resistance heating Rheological properties Rheology Temperature dependence Transport equations Zeta potential |
title | Temperature gradient focusing of bio-analyte in a microfluidic channel dealing with non-Newtonian electrolyte considering temperature-dependent zeta potential |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T12%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20gradient%20focusing%20of%20bio-analyte%20in%20a%20microfluidic%20channel%20dealing%20with%20non-Newtonian%20electrolyte%20considering%20temperature-dependent%20zeta%20potential&rft.jtitle=Electrophoresis&rft.au=Dutta,%20Amitava&rft.date=2023-09-01&rft.volume=44&rft.issue=17-18&rft.spage=1369&rft.epage=1376&rft.pages=1369-1376&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.202300033&rft_dat=%3Cproquest_cross%3E2864085571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2864085571&rft_id=info:pmid/37332180&rfr_iscdi=true |