Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary

Inland waters are important components of the global carbon cycle as they regulate the flow of terrestrial carbon to the oceans. In this context, remote monitoring of Colored Dissolved Organic Matter (CDOM) allows for analyzing the carbon content in aquatic systems. In this study, we develop semi-em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental monitoring and assessment 2023-07, Vol.195 (7), p.846-846, Article 846
Hauptverfasser: Lima Filho, Marcone Correia de Oliveira, Tavares, Matheus Henrique, Fragoso Jr, Carlos Ruberto, Lins, Regina Camara, Vich, Daniele Vital
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 846
container_issue 7
container_start_page 846
container_title Environmental monitoring and assessment
container_volume 195
creator Lima Filho, Marcone Correia de Oliveira
Tavares, Matheus Henrique
Fragoso Jr, Carlos Ruberto
Lins, Regina Camara
Vich, Daniele Vital
description Inland waters are important components of the global carbon cycle as they regulate the flow of terrestrial carbon to the oceans. In this context, remote monitoring of Colored Dissolved Organic Matter (CDOM) allows for analyzing the carbon content in aquatic systems. In this study, we develop semi-empirical models for remote estimation of the CDOM absorption coefficient at 400 nm ( a CDOM ) in a tropical estuarine-lagunar productive system using spectral reflectance data. Two-band ratio models usually work well for this task, but studies have added more bands to the models to reduce interfering signals, so in addition to the two-band ratio models, we tested three- and four-band ratios. We used a genetic algorithm (GA) to search for the best combination of bands, and found that adding more bands did not provide performance gains, showing that the proper choice of bands is more important. NIR-Green models outperformed Red-Blue models. A two-band NIR-Green model showed the best results (R 2  = 0.82, RMSE = 0.22 m −1 , and MAPE = 5.85%) using field hyperspectral data. Furthermore, we evaluated the potential application for Sentinel-2 bands, especially using the B5/B3, Log(B5/B3) and Log(B6/B2) band ratios. However, it is still necessary to further explore the influence of atmospheric correction (AC) to estimate the a CDOM using satellite data.
doi_str_mv 10.1007/s10661-023-11449-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2827252162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826995577</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-d70d25573fd17748dd5cf29b600d959652282d2318ec237331c6b7e231006b843</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2KqizQL8ABWeJCDy7-k9jrY7VtaSUQB-BsZe3JyiiJFztZab89A6FU6qEnW57fvHnjR8ip4F8F5-ayCK61YFwqJkRVWaY_kIWojWLS1vaALLjQhmml7SE5KuWRc25NZT-RQ2WUlNLUCzLeQR8Z9NuYo2862qcAXaFtyjRDn0agUMbYN2McNtSnLmUINMRSUrfDW8qbZoieIjBCpher77c3X2gcaEO3OYXJj3EHdMxp-6qOWlOT9yfkY9t0BT6_ncfk4eeP-9Uvdn179Xv17Zp5ZeqRBcODrHGfNghjqmUItW-lXWvOAy6oaymXMkglluAlrqSE12sD-MC5Xi8rdUwuZl308jThcNfH4qHrmgHSVBy2G1lLoSWi5_-gj2nKA7p7obS16MMgJWfK51RKhtZtM35O3jvB3Usmbs7EYSbuNROnsensTXpa9xDeW_6EgICagYKlYQP57-z_yD4DJ6iWYg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826995577</pqid></control><display><type>article</type><title>Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary</title><source>SpringerNature Journals</source><creator>Lima Filho, Marcone Correia de Oliveira ; Tavares, Matheus Henrique ; Fragoso Jr, Carlos Ruberto ; Lins, Regina Camara ; Vich, Daniele Vital</creator><creatorcontrib>Lima Filho, Marcone Correia de Oliveira ; Tavares, Matheus Henrique ; Fragoso Jr, Carlos Ruberto ; Lins, Regina Camara ; Vich, Daniele Vital</creatorcontrib><description>Inland waters are important components of the global carbon cycle as they regulate the flow of terrestrial carbon to the oceans. In this context, remote monitoring of Colored Dissolved Organic Matter (CDOM) allows for analyzing the carbon content in aquatic systems. In this study, we develop semi-empirical models for remote estimation of the CDOM absorption coefficient at 400 nm ( a CDOM ) in a tropical estuarine-lagunar productive system using spectral reflectance data. Two-band ratio models usually work well for this task, but studies have added more bands to the models to reduce interfering signals, so in addition to the two-band ratio models, we tested three- and four-band ratios. We used a genetic algorithm (GA) to search for the best combination of bands, and found that adding more bands did not provide performance gains, showing that the proper choice of bands is more important. NIR-Green models outperformed Red-Blue models. A two-band NIR-Green model showed the best results (R 2  = 0.82, RMSE = 0.22 m −1 , and MAPE = 5.85%) using field hyperspectral data. Furthermore, we evaluated the potential application for Sentinel-2 bands, especially using the B5/B3, Log(B5/B3) and Log(B6/B2) band ratios. However, it is still necessary to further explore the influence of atmospheric correction (AC) to estimate the a CDOM using satellite data.</description><identifier>ISSN: 0167-6369</identifier><identifier>EISSN: 1573-2959</identifier><identifier>DOI: 10.1007/s10661-023-11449-6</identifier><identifier>PMID: 37322275</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Absorption coefficient ; Absorptivity ; Aquatic environment ; Atmospheric correction ; Atmospheric models ; Atmospheric Protection/Air Quality Control/Air Pollution ; Brackishwater environment ; Carbon ; Carbon content ; Carbon cycle ; Colour ; Dissolved organic matter ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Empirical analysis ; Empirical models ; Environment ; Environmental Management ; Environmental monitoring ; Environmental science ; Estimation ; Estuaries ; Estuarine dynamics ; Genetic algorithms ; Inland waters ; Modelling ; Monitoring/Environmental Analysis ; Oceans ; Ratios ; Reflectance ; Remote monitoring ; Satellite data ; Spectral reflectance</subject><ispartof>Environmental monitoring and assessment, 2023-07, Vol.195 (7), p.846-846, Article 846</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-d70d25573fd17748dd5cf29b600d959652282d2318ec237331c6b7e231006b843</citedby><cites>FETCH-LOGICAL-c375t-d70d25573fd17748dd5cf29b600d959652282d2318ec237331c6b7e231006b843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10661-023-11449-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10661-023-11449-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37322275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lima Filho, Marcone Correia de Oliveira</creatorcontrib><creatorcontrib>Tavares, Matheus Henrique</creatorcontrib><creatorcontrib>Fragoso Jr, Carlos Ruberto</creatorcontrib><creatorcontrib>Lins, Regina Camara</creatorcontrib><creatorcontrib>Vich, Daniele Vital</creatorcontrib><title>Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary</title><title>Environmental monitoring and assessment</title><addtitle>Environ Monit Assess</addtitle><addtitle>Environ Monit Assess</addtitle><description>Inland waters are important components of the global carbon cycle as they regulate the flow of terrestrial carbon to the oceans. In this context, remote monitoring of Colored Dissolved Organic Matter (CDOM) allows for analyzing the carbon content in aquatic systems. In this study, we develop semi-empirical models for remote estimation of the CDOM absorption coefficient at 400 nm ( a CDOM ) in a tropical estuarine-lagunar productive system using spectral reflectance data. Two-band ratio models usually work well for this task, but studies have added more bands to the models to reduce interfering signals, so in addition to the two-band ratio models, we tested three- and four-band ratios. We used a genetic algorithm (GA) to search for the best combination of bands, and found that adding more bands did not provide performance gains, showing that the proper choice of bands is more important. NIR-Green models outperformed Red-Blue models. A two-band NIR-Green model showed the best results (R 2  = 0.82, RMSE = 0.22 m −1 , and MAPE = 5.85%) using field hyperspectral data. Furthermore, we evaluated the potential application for Sentinel-2 bands, especially using the B5/B3, Log(B5/B3) and Log(B6/B2) band ratios. However, it is still necessary to further explore the influence of atmospheric correction (AC) to estimate the a CDOM using satellite data.</description><subject>Absorption coefficient</subject><subject>Absorptivity</subject><subject>Aquatic environment</subject><subject>Atmospheric correction</subject><subject>Atmospheric models</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Brackishwater environment</subject><subject>Carbon</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Colour</subject><subject>Dissolved organic matter</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Empirical analysis</subject><subject>Empirical models</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Environmental monitoring</subject><subject>Environmental science</subject><subject>Estimation</subject><subject>Estuaries</subject><subject>Estuarine dynamics</subject><subject>Genetic algorithms</subject><subject>Inland waters</subject><subject>Modelling</subject><subject>Monitoring/Environmental Analysis</subject><subject>Oceans</subject><subject>Ratios</subject><subject>Reflectance</subject><subject>Remote monitoring</subject><subject>Satellite data</subject><subject>Spectral reflectance</subject><issn>0167-6369</issn><issn>1573-2959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9P3DAQxa2KqizQL8ABWeJCDy7-k9jrY7VtaSUQB-BsZe3JyiiJFztZab89A6FU6qEnW57fvHnjR8ip4F8F5-ayCK61YFwqJkRVWaY_kIWojWLS1vaALLjQhmml7SE5KuWRc25NZT-RQ2WUlNLUCzLeQR8Z9NuYo2862qcAXaFtyjRDn0agUMbYN2McNtSnLmUINMRSUrfDW8qbZoieIjBCpher77c3X2gcaEO3OYXJj3EHdMxp-6qOWlOT9yfkY9t0BT6_ncfk4eeP-9Uvdn179Xv17Zp5ZeqRBcODrHGfNghjqmUItW-lXWvOAy6oaymXMkglluAlrqSE12sD-MC5Xi8rdUwuZl308jThcNfH4qHrmgHSVBy2G1lLoSWi5_-gj2nKA7p7obS16MMgJWfK51RKhtZtM35O3jvB3Usmbs7EYSbuNROnsensTXpa9xDeW_6EgICagYKlYQP57-z_yD4DJ6iWYg</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Lima Filho, Marcone Correia de Oliveira</creator><creator>Tavares, Matheus Henrique</creator><creator>Fragoso Jr, Carlos Ruberto</creator><creator>Lins, Regina Camara</creator><creator>Vich, Daniele Vital</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>KL.</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20230701</creationdate><title>Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary</title><author>Lima Filho, Marcone Correia de Oliveira ; Tavares, Matheus Henrique ; Fragoso Jr, Carlos Ruberto ; Lins, Regina Camara ; Vich, Daniele Vital</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-d70d25573fd17748dd5cf29b600d959652282d2318ec237331c6b7e231006b843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Absorption coefficient</topic><topic>Absorptivity</topic><topic>Aquatic environment</topic><topic>Atmospheric correction</topic><topic>Atmospheric models</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Brackishwater environment</topic><topic>Carbon</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Colour</topic><topic>Dissolved organic matter</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Empirical analysis</topic><topic>Empirical models</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Environmental monitoring</topic><topic>Environmental science</topic><topic>Estimation</topic><topic>Estuaries</topic><topic>Estuarine dynamics</topic><topic>Genetic algorithms</topic><topic>Inland waters</topic><topic>Modelling</topic><topic>Monitoring/Environmental Analysis</topic><topic>Oceans</topic><topic>Ratios</topic><topic>Reflectance</topic><topic>Remote monitoring</topic><topic>Satellite data</topic><topic>Spectral reflectance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima Filho, Marcone Correia de Oliveira</creatorcontrib><creatorcontrib>Tavares, Matheus Henrique</creatorcontrib><creatorcontrib>Fragoso Jr, Carlos Ruberto</creatorcontrib><creatorcontrib>Lins, Regina Camara</creatorcontrib><creatorcontrib>Vich, Daniele Vital</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental monitoring and assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima Filho, Marcone Correia de Oliveira</au><au>Tavares, Matheus Henrique</au><au>Fragoso Jr, Carlos Ruberto</au><au>Lins, Regina Camara</au><au>Vich, Daniele Vital</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary</atitle><jtitle>Environmental monitoring and assessment</jtitle><stitle>Environ Monit Assess</stitle><addtitle>Environ Monit Assess</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>195</volume><issue>7</issue><spage>846</spage><epage>846</epage><pages>846-846</pages><artnum>846</artnum><issn>0167-6369</issn><eissn>1573-2959</eissn><abstract>Inland waters are important components of the global carbon cycle as they regulate the flow of terrestrial carbon to the oceans. In this context, remote monitoring of Colored Dissolved Organic Matter (CDOM) allows for analyzing the carbon content in aquatic systems. In this study, we develop semi-empirical models for remote estimation of the CDOM absorption coefficient at 400 nm ( a CDOM ) in a tropical estuarine-lagunar productive system using spectral reflectance data. Two-band ratio models usually work well for this task, but studies have added more bands to the models to reduce interfering signals, so in addition to the two-band ratio models, we tested three- and four-band ratios. We used a genetic algorithm (GA) to search for the best combination of bands, and found that adding more bands did not provide performance gains, showing that the proper choice of bands is more important. NIR-Green models outperformed Red-Blue models. A two-band NIR-Green model showed the best results (R 2  = 0.82, RMSE = 0.22 m −1 , and MAPE = 5.85%) using field hyperspectral data. Furthermore, we evaluated the potential application for Sentinel-2 bands, especially using the B5/B3, Log(B5/B3) and Log(B6/B2) band ratios. However, it is still necessary to further explore the influence of atmospheric correction (AC) to estimate the a CDOM using satellite data.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>37322275</pmid><doi>10.1007/s10661-023-11449-6</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6369
ispartof Environmental monitoring and assessment, 2023-07, Vol.195 (7), p.846-846, Article 846
issn 0167-6369
1573-2959
language eng
recordid cdi_proquest_miscellaneous_2827252162
source SpringerNature Journals
subjects Absorption coefficient
Absorptivity
Aquatic environment
Atmospheric correction
Atmospheric models
Atmospheric Protection/Air Quality Control/Air Pollution
Brackishwater environment
Carbon
Carbon content
Carbon cycle
Colour
Dissolved organic matter
Earth and Environmental Science
Ecology
Ecotoxicology
Empirical analysis
Empirical models
Environment
Environmental Management
Environmental monitoring
Environmental science
Estimation
Estuaries
Estuarine dynamics
Genetic algorithms
Inland waters
Modelling
Monitoring/Environmental Analysis
Oceans
Ratios
Reflectance
Remote monitoring
Satellite data
Spectral reflectance
title Semi-empirical models for remote estimating colored dissolved organic matter (CDOM) in a productive tropical estuary
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A28%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-empirical%20models%20for%20remote%20estimating%20colored%20dissolved%20organic%20matter%20(CDOM)%20in%20a%20productive%20tropical%20estuary&rft.jtitle=Environmental%20monitoring%20and%20assessment&rft.au=Lima%20Filho,%20Marcone%20Correia%20de%20Oliveira&rft.date=2023-07-01&rft.volume=195&rft.issue=7&rft.spage=846&rft.epage=846&rft.pages=846-846&rft.artnum=846&rft.issn=0167-6369&rft.eissn=1573-2959&rft_id=info:doi/10.1007/s10661-023-11449-6&rft_dat=%3Cproquest_cross%3E2826995577%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826995577&rft_id=info:pmid/37322275&rfr_iscdi=true