Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein

Abstract Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant and cell physiology 2023-06, Vol.64 (6), p.660-673
Hauptverfasser: Masuda, Takako, Bečková, Martina, Turóczy, Zoltán, Pilný, Jan, Sobotka, Roman, Trinugroho, Joko P, Nixon, Peter J, Prášil, Ondřej, Komenda, Josef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 6
container_start_page 660
container_title Plant and cell physiology
container_volume 64
creator Masuda, Takako
Bečková, Martina
Turóczy, Zoltán
Pilný, Jan
Sobotka, Roman
Trinugroho, Joko P
Nixon, Peter J
Prášil, Ondřej
Komenda, Josef
description Abstract Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.
doi_str_mv 10.1093/pcp/pcad027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2826220250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/pcp/pcad027</oup_id><sourcerecordid>2826220250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-9d97695cb018960c10860c616b57ed75a9dfd3a64c5693f14f55fcae01c264803</originalsourceid><addsrcrecordid>eNp9kctO3DAUhq2qVZnSrrqvvKqQqsBxPHGSJRpuIyEVMe06cmwHjBI7-LLIjscA8XY8CQ4zdNmFj62jT9_R8Y_QdwKHBGp6NIoxHS4hLz-gBVmWJKuhoB_RAoDmGZQV2UNfvL8DSG8Kn9EeZXXJGKkW6PlYiDjEngdtDbYdXk3c2JaLoJzmPb66tcH6yQc14PUar6wJXBttbnC4Vfjl4fHa3kT18vCETwjexDYaHfDav4HO9r2SuJ3wWfAX-MrZoLhXmBuJN5NJAq_9PHNWbUJqcydnzxupzVf0qeO9V9929z76e3b6Z3WRXf4-X6-OLzNBqypktUzL1IVogVQ1A0GgSpUR1halkmXBa9lJytlSFKymHVl2RdEJroCInC0roPvoYOsdnb2Pyodm0F6ovudG2eibvMpZnkNezOivLSqc9d6prhmdHribGgLNnEaT0mh2aST6x04c20HJf-z79yfg5xawcfyv6RXaMZZm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2826220250</pqid></control><display><type>article</type><title>Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein</title><source>MEDLINE</source><source>Oxford Journals - Connect here FIRST to enable access</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Masuda, Takako ; Bečková, Martina ; Turóczy, Zoltán ; Pilný, Jan ; Sobotka, Roman ; Trinugroho, Joko P ; Nixon, Peter J ; Prášil, Ondřej ; Komenda, Josef</creator><creatorcontrib>Masuda, Takako ; Bečková, Martina ; Turóczy, Zoltán ; Pilný, Jan ; Sobotka, Roman ; Trinugroho, Joko P ; Nixon, Peter J ; Prášil, Ondřej ; Komenda, Josef</creatorcontrib><description>Abstract Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pcad027</identifier><identifier>PMID: 36976618</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><subject>Endopeptidases - metabolism ; Peptide Hydrolases ; Photosynthesis - physiology ; Photosystem II Protein Complex - metabolism ; Synechocystis - metabolism ; Thylakoids - metabolism</subject><ispartof>Plant and cell physiology, 2023-06, Vol.64 (6), p.660-673</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c388t-9d97695cb018960c10860c616b57ed75a9dfd3a64c5693f14f55fcae01c264803</cites><orcidid>0000-0003-4588-0382 ; 0000-0001-5909-3879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36976618$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masuda, Takako</creatorcontrib><creatorcontrib>Bečková, Martina</creatorcontrib><creatorcontrib>Turóczy, Zoltán</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><creatorcontrib>Trinugroho, Joko P</creatorcontrib><creatorcontrib>Nixon, Peter J</creatorcontrib><creatorcontrib>Prášil, Ondřej</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><title>Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>Abstract Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.</description><subject>Endopeptidases - metabolism</subject><subject>Peptide Hydrolases</subject><subject>Photosynthesis - physiology</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Synechocystis - metabolism</subject><subject>Thylakoids - metabolism</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctO3DAUhq2qVZnSrrqvvKqQqsBxPHGSJRpuIyEVMe06cmwHjBI7-LLIjscA8XY8CQ4zdNmFj62jT9_R8Y_QdwKHBGp6NIoxHS4hLz-gBVmWJKuhoB_RAoDmGZQV2UNfvL8DSG8Kn9EeZXXJGKkW6PlYiDjEngdtDbYdXk3c2JaLoJzmPb66tcH6yQc14PUar6wJXBttbnC4Vfjl4fHa3kT18vCETwjexDYaHfDav4HO9r2SuJ3wWfAX-MrZoLhXmBuJN5NJAq_9PHNWbUJqcydnzxupzVf0qeO9V9929z76e3b6Z3WRXf4-X6-OLzNBqypktUzL1IVogVQ1A0GgSpUR1halkmXBa9lJytlSFKymHVl2RdEJroCInC0roPvoYOsdnb2Pyodm0F6ovudG2eibvMpZnkNezOivLSqc9d6prhmdHribGgLNnEaT0mh2aST6x04c20HJf-z79yfg5xawcfyv6RXaMZZm</recordid><startdate>20230615</startdate><enddate>20230615</enddate><creator>Masuda, Takako</creator><creator>Bečková, Martina</creator><creator>Turóczy, Zoltán</creator><creator>Pilný, Jan</creator><creator>Sobotka, Roman</creator><creator>Trinugroho, Joko P</creator><creator>Nixon, Peter J</creator><creator>Prášil, Ondřej</creator><creator>Komenda, Josef</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4588-0382</orcidid><orcidid>https://orcid.org/0000-0001-5909-3879</orcidid></search><sort><creationdate>20230615</creationdate><title>Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein</title><author>Masuda, Takako ; Bečková, Martina ; Turóczy, Zoltán ; Pilný, Jan ; Sobotka, Roman ; Trinugroho, Joko P ; Nixon, Peter J ; Prášil, Ondřej ; Komenda, Josef</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-9d97695cb018960c10860c616b57ed75a9dfd3a64c5693f14f55fcae01c264803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Endopeptidases - metabolism</topic><topic>Peptide Hydrolases</topic><topic>Photosynthesis - physiology</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Synechocystis - metabolism</topic><topic>Thylakoids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masuda, Takako</creatorcontrib><creatorcontrib>Bečková, Martina</creatorcontrib><creatorcontrib>Turóczy, Zoltán</creatorcontrib><creatorcontrib>Pilný, Jan</creatorcontrib><creatorcontrib>Sobotka, Roman</creatorcontrib><creatorcontrib>Trinugroho, Joko P</creatorcontrib><creatorcontrib>Nixon, Peter J</creatorcontrib><creatorcontrib>Prášil, Ondřej</creatorcontrib><creatorcontrib>Komenda, Josef</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masuda, Takako</au><au>Bečková, Martina</au><au>Turóczy, Zoltán</au><au>Pilný, Jan</au><au>Sobotka, Roman</au><au>Trinugroho, Joko P</au><au>Nixon, Peter J</au><au>Prášil, Ondřej</au><au>Komenda, Josef</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2023-06-15</date><risdate>2023</risdate><volume>64</volume><issue>6</issue><spage>660</spage><epage>673</epage><pages>660-673</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>Abstract Unicellular diazotrophic cyanobacteria contribute significantly to the photosynthetic productivity of the ocean and the fixation of molecular nitrogen, with photosynthesis occurring during the day and nitrogen fixation during the night. In species like Crocosphaera watsonii WH8501, the decline in photosynthetic activity in the night is accompanied by the disassembly of oxygen-evolving photosystem II (PSII) complexes. Moreover, in the second half of the night phase, a small amount of rogue D1 (rD1), which is related to the standard form of the D1 subunit found in oxygen-evolving PSII, but of unknown function, accumulates but is quickly degraded at the start of the light phase. We show here that the removal of rD1 is independent of the rD1 transcript level, thylakoid redox state and trans-thylakoid pH but requires light and active protein synthesis. We also found that the maximal level of rD1 positively correlates with the maximal level of chlorophyll (Chl) biosynthesis precursors and enzymes, which suggests a possible role for rogue PSII (rPSII) in the activation of Chl biosynthesis just before or upon the onset of light, when new photosystems are synthesized. By studying strains of Synechocystis PCC 6803 expressing Crocosphaera rD1, we found that the accumulation of rD1 is controlled by the light-dependent synthesis of the standard D1 protein, which triggers the fast FtsH2-dependent degradation of rD1. Affinity purification of FLAG-tagged rD1 unequivocally demonstrated the incorporation of rD1 into a non-oxygen-evolving PSII complex, which we term rPSII. The complex lacks the extrinsic proteins stabilizing the oxygen-evolving Mn4CaO5 cluster but contains the Psb27 and Psb28-1 assembly factors.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>36976618</pmid><doi>10.1093/pcp/pcad027</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4588-0382</orcidid><orcidid>https://orcid.org/0000-0001-5909-3879</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0781
ispartof Plant and cell physiology, 2023-06, Vol.64 (6), p.660-673
issn 0032-0781
1471-9053
language eng
recordid cdi_proquest_miscellaneous_2826220250
source MEDLINE; Oxford Journals - Connect here FIRST to enable access; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Endopeptidases - metabolism
Peptide Hydrolases
Photosynthesis - physiology
Photosystem II Protein Complex - metabolism
Synechocystis - metabolism
Thylakoids - metabolism
title Accumulation of Cyanobacterial Photosystem II Containing the ‘Rogue’ D1 Subunit Is Controlled by FtsH Protease and Synthesis of the Standard D1 Protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T07%3A35%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accumulation%20of%20Cyanobacterial%20Photosystem%20II%20Containing%20the%20%E2%80%98Rogue%E2%80%99%20D1%20Subunit%20Is%20Controlled%20by%20FtsH%20Protease%20and%20Synthesis%20of%20the%20Standard%20D1%20Protein&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Masuda,%20Takako&rft.date=2023-06-15&rft.volume=64&rft.issue=6&rft.spage=660&rft.epage=673&rft.pages=660-673&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pcad027&rft_dat=%3Cproquest_cross%3E2826220250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2826220250&rft_id=info:pmid/36976618&rft_oup_id=10.1093/pcp/pcad027&rfr_iscdi=true