Liquid metal for high-entropy alloy nanoparticles synthesis

High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2023-07, Vol.619 (7968), p.73-77
Hauptverfasser: Cao, Guanghui, Liang, Jingjing, Guo, Zenglong, Yang, Kena, Wang, Gang, Wang, Huiliu, Wan, Xuhao, Li, Zeyuan, Bai, Yijia, Zhang, Yile, Liu, Junlin, Feng, Yanpeng, Zheng, Zhenying, Lu, Cai, He, Guangzhi, Xiong, Zeyou, Liu, Ze, Chen, Shengli, Guo, Yuzheng, Zeng, Mengqi, Lin, Junhao, Fu, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 77
container_issue 7968
container_start_page 73
container_title Nature (London)
container_volume 619
creator Cao, Guanghui
Liang, Jingjing
Guo, Zenglong
Yang, Kena
Wang, Gang
Wang, Huiliu
Wan, Xuhao
Li, Zeyuan
Bai, Yijia
Zhang, Yile
Liu, Junlin
Feng, Yanpeng
Zheng, Zhenying
Lu, Cai
He, Guangzhi
Xiong, Zeyou
Liu, Ze
Chen, Shengli
Guo, Yuzheng
Zeng, Mengqi
Lin, Junhao
Fu, Lei
description High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications 4 , 5 . Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process. We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.
doi_str_mv 10.1038/s41586-023-06082-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2826218659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2826218659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-98a9efee93698ef6b27cf7cfb1b5a7ac0823b7a1e3b80952297ebce8b1327a563</originalsourceid><addsrcrecordid>eNp9kMtKAzEUQIMotlZ_wIUMuHETzWPywpUUX1Bwo-uQTO-0U-bRJjOL-XunTlVwIQSyyLknl4PQJSW3lHB9F1MqtMSEcUwk0QybIzSlqZI4lVodoykhTGOiuZygsxg3hBBBVXqKJlxxKqUkU3S_KHZdsUwqaF2Z5E1I1sVqjaFuQ7PtE1eWTZ_Urm62LrRFVkJMYl-3a4hFPEcnuSsjXBzuGfp4enyfv-DF2_Pr_GGBM65Ei412BnIAw6XRkEvPVJYPx1MvnHLZsDn3ylHgXhMjGDMKfAbaU86UE5LP0M3o3YZm10FsbVXEDMrS1dB00TLNJKNaCjOg13_QTdOFethuoHgqiNBqL2QjlYUmxgC53YaicqG3lNh9WjumtUNa-5XW7tVXB3XnK1j-jHy3HAA-AnF4qlcQfv_-R_sJek2D1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834505876</pqid></control><display><type>article</type><title>Liquid metal for high-entropy alloy nanoparticles synthesis</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Guanghui ; Liang, Jingjing ; Guo, Zenglong ; Yang, Kena ; Wang, Gang ; Wang, Huiliu ; Wan, Xuhao ; Li, Zeyuan ; Bai, Yijia ; Zhang, Yile ; Liu, Junlin ; Feng, Yanpeng ; Zheng, Zhenying ; Lu, Cai ; He, Guangzhi ; Xiong, Zeyou ; Liu, Ze ; Chen, Shengli ; Guo, Yuzheng ; Zeng, Mengqi ; Lin, Junhao ; Fu, Lei</creator><creatorcontrib>Cao, Guanghui ; Liang, Jingjing ; Guo, Zenglong ; Yang, Kena ; Wang, Gang ; Wang, Huiliu ; Wan, Xuhao ; Li, Zeyuan ; Bai, Yijia ; Zhang, Yile ; Liu, Junlin ; Feng, Yanpeng ; Zheng, Zhenying ; Lu, Cai ; He, Guangzhi ; Xiong, Zeyou ; Liu, Ze ; Chen, Shengli ; Guo, Yuzheng ; Zeng, Mengqi ; Lin, Junhao ; Fu, Lei</creatorcontrib><description>High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications 4 , 5 . Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process. We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-023-06082-9</identifier><identifier>PMID: 37316660</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/301/357/354 ; 639/925/357/551 ; Alloying ; Alloys ; Atomic radius ; Casting ; Design optimization ; Enthalpy ; Entropy ; High entropy alloys ; Humanities and Social Sciences ; Liquid metals ; Melting point ; Melting points ; Metals ; multidisciplinary ; Nanoalloys ; Nanoparticles ; Science ; Science (multidisciplinary) ; Solid solutions ; Synthesis ; Transmission electron microscopy</subject><ispartof>Nature (London), 2023-07, Vol.619 (7968), p.73-77</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2023. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Copyright Nature Publishing Group Jul 6, 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-98a9efee93698ef6b27cf7cfb1b5a7ac0823b7a1e3b80952297ebce8b1327a563</citedby><cites>FETCH-LOGICAL-c375t-98a9efee93698ef6b27cf7cfb1b5a7ac0823b7a1e3b80952297ebce8b1327a563</cites><orcidid>0000-0002-1442-052X ; 0000-0003-1356-4422 ; 0000-0002-9906-5351 ; 0000-0001-9224-3816 ; 0000-0002-2195-2823 ; 0000-0003-1058-4719 ; 0000-0001-7448-8860</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-023-06082-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-023-06082-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37316660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cao, Guanghui</creatorcontrib><creatorcontrib>Liang, Jingjing</creatorcontrib><creatorcontrib>Guo, Zenglong</creatorcontrib><creatorcontrib>Yang, Kena</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Huiliu</creatorcontrib><creatorcontrib>Wan, Xuhao</creatorcontrib><creatorcontrib>Li, Zeyuan</creatorcontrib><creatorcontrib>Bai, Yijia</creatorcontrib><creatorcontrib>Zhang, Yile</creatorcontrib><creatorcontrib>Liu, Junlin</creatorcontrib><creatorcontrib>Feng, Yanpeng</creatorcontrib><creatorcontrib>Zheng, Zhenying</creatorcontrib><creatorcontrib>Lu, Cai</creatorcontrib><creatorcontrib>He, Guangzhi</creatorcontrib><creatorcontrib>Xiong, Zeyou</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><creatorcontrib>Zeng, Mengqi</creatorcontrib><creatorcontrib>Lin, Junhao</creatorcontrib><creatorcontrib>Fu, Lei</creatorcontrib><title>Liquid metal for high-entropy alloy nanoparticles synthesis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications 4 , 5 . Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process. We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.</description><subject>119/118</subject><subject>639/301/357/354</subject><subject>639/925/357/551</subject><subject>Alloying</subject><subject>Alloys</subject><subject>Atomic radius</subject><subject>Casting</subject><subject>Design optimization</subject><subject>Enthalpy</subject><subject>Entropy</subject><subject>High entropy alloys</subject><subject>Humanities and Social Sciences</subject><subject>Liquid metals</subject><subject>Melting point</subject><subject>Melting points</subject><subject>Metals</subject><subject>multidisciplinary</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Solid solutions</subject><subject>Synthesis</subject><subject>Transmission electron microscopy</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMtKAzEUQIMotlZ_wIUMuHETzWPywpUUX1Bwo-uQTO-0U-bRJjOL-XunTlVwIQSyyLknl4PQJSW3lHB9F1MqtMSEcUwk0QybIzSlqZI4lVodoykhTGOiuZygsxg3hBBBVXqKJlxxKqUkU3S_KHZdsUwqaF2Z5E1I1sVqjaFuQ7PtE1eWTZ_Urm62LrRFVkJMYl-3a4hFPEcnuSsjXBzuGfp4enyfv-DF2_Pr_GGBM65Ei412BnIAw6XRkEvPVJYPx1MvnHLZsDn3ylHgXhMjGDMKfAbaU86UE5LP0M3o3YZm10FsbVXEDMrS1dB00TLNJKNaCjOg13_QTdOFethuoHgqiNBqL2QjlYUmxgC53YaicqG3lNh9WjumtUNa-5XW7tVXB3XnK1j-jHy3HAA-AnF4qlcQfv_-R_sJek2D1w</recordid><startdate>20230706</startdate><enddate>20230706</enddate><creator>Cao, Guanghui</creator><creator>Liang, Jingjing</creator><creator>Guo, Zenglong</creator><creator>Yang, Kena</creator><creator>Wang, Gang</creator><creator>Wang, Huiliu</creator><creator>Wan, Xuhao</creator><creator>Li, Zeyuan</creator><creator>Bai, Yijia</creator><creator>Zhang, Yile</creator><creator>Liu, Junlin</creator><creator>Feng, Yanpeng</creator><creator>Zheng, Zhenying</creator><creator>Lu, Cai</creator><creator>He, Guangzhi</creator><creator>Xiong, Zeyou</creator><creator>Liu, Ze</creator><creator>Chen, Shengli</creator><creator>Guo, Yuzheng</creator><creator>Zeng, Mengqi</creator><creator>Lin, Junhao</creator><creator>Fu, Lei</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1442-052X</orcidid><orcidid>https://orcid.org/0000-0003-1356-4422</orcidid><orcidid>https://orcid.org/0000-0002-9906-5351</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0002-2195-2823</orcidid><orcidid>https://orcid.org/0000-0003-1058-4719</orcidid><orcidid>https://orcid.org/0000-0001-7448-8860</orcidid></search><sort><creationdate>20230706</creationdate><title>Liquid metal for high-entropy alloy nanoparticles synthesis</title><author>Cao, Guanghui ; Liang, Jingjing ; Guo, Zenglong ; Yang, Kena ; Wang, Gang ; Wang, Huiliu ; Wan, Xuhao ; Li, Zeyuan ; Bai, Yijia ; Zhang, Yile ; Liu, Junlin ; Feng, Yanpeng ; Zheng, Zhenying ; Lu, Cai ; He, Guangzhi ; Xiong, Zeyou ; Liu, Ze ; Chen, Shengli ; Guo, Yuzheng ; Zeng, Mengqi ; Lin, Junhao ; Fu, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-98a9efee93698ef6b27cf7cfb1b5a7ac0823b7a1e3b80952297ebce8b1327a563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>119/118</topic><topic>639/301/357/354</topic><topic>639/925/357/551</topic><topic>Alloying</topic><topic>Alloys</topic><topic>Atomic radius</topic><topic>Casting</topic><topic>Design optimization</topic><topic>Enthalpy</topic><topic>Entropy</topic><topic>High entropy alloys</topic><topic>Humanities and Social Sciences</topic><topic>Liquid metals</topic><topic>Melting point</topic><topic>Melting points</topic><topic>Metals</topic><topic>multidisciplinary</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Solid solutions</topic><topic>Synthesis</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Guanghui</creatorcontrib><creatorcontrib>Liang, Jingjing</creatorcontrib><creatorcontrib>Guo, Zenglong</creatorcontrib><creatorcontrib>Yang, Kena</creatorcontrib><creatorcontrib>Wang, Gang</creatorcontrib><creatorcontrib>Wang, Huiliu</creatorcontrib><creatorcontrib>Wan, Xuhao</creatorcontrib><creatorcontrib>Li, Zeyuan</creatorcontrib><creatorcontrib>Bai, Yijia</creatorcontrib><creatorcontrib>Zhang, Yile</creatorcontrib><creatorcontrib>Liu, Junlin</creatorcontrib><creatorcontrib>Feng, Yanpeng</creatorcontrib><creatorcontrib>Zheng, Zhenying</creatorcontrib><creatorcontrib>Lu, Cai</creatorcontrib><creatorcontrib>He, Guangzhi</creatorcontrib><creatorcontrib>Xiong, Zeyou</creatorcontrib><creatorcontrib>Liu, Ze</creatorcontrib><creatorcontrib>Chen, Shengli</creatorcontrib><creatorcontrib>Guo, Yuzheng</creatorcontrib><creatorcontrib>Zeng, Mengqi</creatorcontrib><creatorcontrib>Lin, Junhao</creatorcontrib><creatorcontrib>Fu, Lei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database (ProQuest)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Guanghui</au><au>Liang, Jingjing</au><au>Guo, Zenglong</au><au>Yang, Kena</au><au>Wang, Gang</au><au>Wang, Huiliu</au><au>Wan, Xuhao</au><au>Li, Zeyuan</au><au>Bai, Yijia</au><au>Zhang, Yile</au><au>Liu, Junlin</au><au>Feng, Yanpeng</au><au>Zheng, Zhenying</au><au>Lu, Cai</au><au>He, Guangzhi</au><au>Xiong, Zeyou</au><au>Liu, Ze</au><au>Chen, Shengli</au><au>Guo, Yuzheng</au><au>Zeng, Mengqi</au><au>Lin, Junhao</au><au>Fu, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid metal for high-entropy alloy nanoparticles synthesis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2023-07-06</date><risdate>2023</risdate><volume>619</volume><issue>7968</issue><spage>73</spage><epage>77</epage><pages>73-77</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>High-entropy alloy nanoparticles (HEA-NPs) show great potential as functional materials 1 – 3 . However, thus far, the realized high-entropy alloys have been restricted to palettes of similar elements, which greatly hinders the material design, property optimization and mechanistic exploration for different applications 4 , 5 . Herein, we discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, thus realizing the synthesis of HEA-NPs with a diverse range of metal elements in mild reaction conditions. The involved elements have a wide range of atomic radii (1.24–1.97 Å) and melting points (303–3,683 K). We also realized the precisely fabricated structures of nanoparticles via mixing enthalpy tuning. Moreover, the real-time conversion process (that is, from liquid metal to crystalline HEA-NPs) is captured in situ, which confirmed a dynamic fission–fusion behaviour during the alloying process. We discovered that liquid metal endowing negative mixing enthalpy with other elements could provide a stable thermodynamic condition and act as a desirable dynamic mixing reservoir, realizing the synthesis of high-entropy alloy nanoparticles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37316660</pmid><doi>10.1038/s41586-023-06082-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-1442-052X</orcidid><orcidid>https://orcid.org/0000-0003-1356-4422</orcidid><orcidid>https://orcid.org/0000-0002-9906-5351</orcidid><orcidid>https://orcid.org/0000-0001-9224-3816</orcidid><orcidid>https://orcid.org/0000-0002-2195-2823</orcidid><orcidid>https://orcid.org/0000-0003-1058-4719</orcidid><orcidid>https://orcid.org/0000-0001-7448-8860</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2023-07, Vol.619 (7968), p.73-77
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_2826218659
source Nature; SpringerLink Journals - AutoHoldings
subjects 119/118
639/301/357/354
639/925/357/551
Alloying
Alloys
Atomic radius
Casting
Design optimization
Enthalpy
Entropy
High entropy alloys
Humanities and Social Sciences
Liquid metals
Melting point
Melting points
Metals
multidisciplinary
Nanoalloys
Nanoparticles
Science
Science (multidisciplinary)
Solid solutions
Synthesis
Transmission electron microscopy
title Liquid metal for high-entropy alloy nanoparticles synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T22%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20metal%20for%20high-entropy%20alloy%20nanoparticles%20synthesis&rft.jtitle=Nature%20(London)&rft.au=Cao,%20Guanghui&rft.date=2023-07-06&rft.volume=619&rft.issue=7968&rft.spage=73&rft.epage=77&rft.pages=73-77&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-023-06082-9&rft_dat=%3Cproquest_cross%3E2826218659%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2834505876&rft_id=info:pmid/37316660&rfr_iscdi=true