Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance
This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed perf...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2024-03, Vol.35 (3), p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE transaction on neural networks and learning systems |
container_volume | 35 |
creator | Yu, Ziquan Li, Jiaxu Xu, Yiwei Zhang, Youmin Jiang, Bin Su, Chun-Yi |
description | This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed performance functions (PPFs) are developed to transform the distributed tracking errors into a new set of errors by incorporating user-specified transient and steady-state requirements. Then, the critic neural networks (NNs) are developed to learn the long-term performance indices, which are used to evaluate the distributed tracking performance. Based on the generated critic NNs, actor NNs are designed to learn the unknown nonlinear terms. Moreover, to compensate for the reinforcement learning errors of actor-critic NNs, nonlinear disturbance observers (DOs) with skillfully constructed auxiliary learning errors are developed to facilitate the FTFC design. Furthermore, by using the Lyapunov stability analysis, it is shown that all follower UAVs can track the leader UAV with predesigned offsets, and the distributed tracking errors are finite-time convergent. Finally, comparative simulation results are presented to show the effectiveness of the proposed control scheme. |
doi_str_mv | 10.1109/TNNLS.2023.3281403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_2825810896</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10149179</ieee_id><sourcerecordid>2825810896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-11719ca942099abff1768bffc0490870ed0d52bd46d09f72f6e0924b571083123</originalsourceid><addsrcrecordid>eNpdkc1u1DAURi0EolXpCyCELLFhk8E_iR0vhxFDkUbTCqaUXeTYN-CSxIPtQHkLHhmHGSqEN9eSz3ek6w-hp5QsKCXq1W673XxYMML4grOaloQ_QKeMClYwXtcP7-_y0wk6j_GW5CNIJUr1GJ1wySmpqTxFv96DGzsfDAwwJrwBHUY3fi5e6wgWr4M2yflR98VlsBDw0up9ct8Br_XUp2Lnewg659Y-DHom8cqPKfge-w5vIf3w4evscXdgi5ssxtfLjxHfuPQFXwWIJrg2v19B6GbDaOAJetTpPsL5cZ6h6_Wb3eqi2Fy-fbdabgrDK5YKSiVVRquSEaV023VUijoPQ0pFaknAElux1pbCEtVJ1gkgipVtJfPinDJ-hl4evPvgv00QUzO4aKDv9Qh-ig2rWVVnVomMvvgPvfVTyJ-SKcW5oETIMlPsQJngYwzQNfvgBh1-NpQ0c2XNn8qaubLmWFkOPT-qp3YAex_5W1AGnh0ABwD_GGmpqFT8NwLdmxk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933610674</pqid></control><display><type>article</type><title>Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance</title><source>IEEE Electronic Library (IEL)</source><creator>Yu, Ziquan ; Li, Jiaxu ; Xu, Yiwei ; Zhang, Youmin ; Jiang, Bin ; Su, Chun-Yi</creator><creatorcontrib>Yu, Ziquan ; Li, Jiaxu ; Xu, Yiwei ; Zhang, Youmin ; Jiang, Bin ; Su, Chun-Yi</creatorcontrib><description>This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed performance functions (PPFs) are developed to transform the distributed tracking errors into a new set of errors by incorporating user-specified transient and steady-state requirements. Then, the critic neural networks (NNs) are developed to learn the long-term performance indices, which are used to evaluate the distributed tracking performance. Based on the generated critic NNs, actor NNs are designed to learn the unknown nonlinear terms. Moreover, to compensate for the reinforcement learning errors of actor-critic NNs, nonlinear disturbance observers (DOs) with skillfully constructed auxiliary learning errors are developed to facilitate the FTFC design. Furthermore, by using the Lyapunov stability analysis, it is shown that all follower UAVs can track the leader UAV with predesigned offsets, and the distributed tracking errors are finite-time convergent. Finally, comparative simulation results are presented to show the effectiveness of the proposed control scheme.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2023.3281403</identifier><identifier>PMID: 37310817</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Disturbance observer (DO) ; Disturbance observers ; Fault tolerance ; Fault tolerant systems ; fault-tolerant formation control (FTFC) ; finite-time prescribed performance ; Fixed wings ; fixed-wing unmanned aerial vehicle (UAV) ; Formation control ; fractional-order (FO) control ; Learning ; Machine learning ; Neural networks ; Performance indices ; Reinforcement ; Reinforcement learning ; reinforcement learning control ; Stability analysis ; Steady-state ; Tracking errors ; Transient analysis ; Unmanned aerial vehicles</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-11719ca942099abff1768bffc0490870ed0d52bd46d09f72f6e0924b571083123</citedby><cites>FETCH-LOGICAL-c352t-11719ca942099abff1768bffc0490870ed0d52bd46d09f72f6e0924b571083123</cites><orcidid>0000-0003-3458-9303 ; 0000-0002-9731-5943 ; 0000-0002-1026-4195 ; 0000-0002-1869-5563 ; 0000-0003-2696-5436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10149179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10149179$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37310817$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Ziquan</creatorcontrib><creatorcontrib>Li, Jiaxu</creatorcontrib><creatorcontrib>Xu, Yiwei</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><title>Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed performance functions (PPFs) are developed to transform the distributed tracking errors into a new set of errors by incorporating user-specified transient and steady-state requirements. Then, the critic neural networks (NNs) are developed to learn the long-term performance indices, which are used to evaluate the distributed tracking performance. Based on the generated critic NNs, actor NNs are designed to learn the unknown nonlinear terms. Moreover, to compensate for the reinforcement learning errors of actor-critic NNs, nonlinear disturbance observers (DOs) with skillfully constructed auxiliary learning errors are developed to facilitate the FTFC design. Furthermore, by using the Lyapunov stability analysis, it is shown that all follower UAVs can track the leader UAV with predesigned offsets, and the distributed tracking errors are finite-time convergent. Finally, comparative simulation results are presented to show the effectiveness of the proposed control scheme.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Disturbance observer (DO)</subject><subject>Disturbance observers</subject><subject>Fault tolerance</subject><subject>Fault tolerant systems</subject><subject>fault-tolerant formation control (FTFC)</subject><subject>finite-time prescribed performance</subject><subject>Fixed wings</subject><subject>fixed-wing unmanned aerial vehicle (UAV)</subject><subject>Formation control</subject><subject>fractional-order (FO) control</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Performance indices</subject><subject>Reinforcement</subject><subject>Reinforcement learning</subject><subject>reinforcement learning control</subject><subject>Stability analysis</subject><subject>Steady-state</subject><subject>Tracking errors</subject><subject>Transient analysis</subject><subject>Unmanned aerial vehicles</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkc1u1DAURi0EolXpCyCELLFhk8E_iR0vhxFDkUbTCqaUXeTYN-CSxIPtQHkLHhmHGSqEN9eSz3ek6w-hp5QsKCXq1W673XxYMML4grOaloQ_QKeMClYwXtcP7-_y0wk6j_GW5CNIJUr1GJ1wySmpqTxFv96DGzsfDAwwJrwBHUY3fi5e6wgWr4M2yflR98VlsBDw0up9ct8Br_XUp2Lnewg659Y-DHom8cqPKfge-w5vIf3w4evscXdgi5ssxtfLjxHfuPQFXwWIJrg2v19B6GbDaOAJetTpPsL5cZ6h6_Wb3eqi2Fy-fbdabgrDK5YKSiVVRquSEaV023VUijoPQ0pFaknAElux1pbCEtVJ1gkgipVtJfPinDJ-hl4evPvgv00QUzO4aKDv9Qh-ig2rWVVnVomMvvgPvfVTyJ-SKcW5oETIMlPsQJngYwzQNfvgBh1-NpQ0c2XNn8qaubLmWFkOPT-qp3YAex_5W1AGnh0ABwD_GGmpqFT8NwLdmxk</recordid><startdate>20240301</startdate><enddate>20240301</enddate><creator>Yu, Ziquan</creator><creator>Li, Jiaxu</creator><creator>Xu, Yiwei</creator><creator>Zhang, Youmin</creator><creator>Jiang, Bin</creator><creator>Su, Chun-Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3458-9303</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0002-1026-4195</orcidid><orcidid>https://orcid.org/0000-0002-1869-5563</orcidid><orcidid>https://orcid.org/0000-0003-2696-5436</orcidid></search><sort><creationdate>20240301</creationdate><title>Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance</title><author>Yu, Ziquan ; Li, Jiaxu ; Xu, Yiwei ; Zhang, Youmin ; Jiang, Bin ; Su, Chun-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-11719ca942099abff1768bffc0490870ed0d52bd46d09f72f6e0924b571083123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Disturbance observer (DO)</topic><topic>Disturbance observers</topic><topic>Fault tolerance</topic><topic>Fault tolerant systems</topic><topic>fault-tolerant formation control (FTFC)</topic><topic>finite-time prescribed performance</topic><topic>Fixed wings</topic><topic>fixed-wing unmanned aerial vehicle (UAV)</topic><topic>Formation control</topic><topic>fractional-order (FO) control</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Performance indices</topic><topic>Reinforcement</topic><topic>Reinforcement learning</topic><topic>reinforcement learning control</topic><topic>Stability analysis</topic><topic>Steady-state</topic><topic>Tracking errors</topic><topic>Transient analysis</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ziquan</creatorcontrib><creatorcontrib>Li, Jiaxu</creatorcontrib><creatorcontrib>Xu, Yiwei</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><creatorcontrib>Jiang, Bin</creatorcontrib><creatorcontrib>Su, Chun-Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yu, Ziquan</au><au>Li, Jiaxu</au><au>Xu, Yiwei</au><au>Zhang, Youmin</au><au>Jiang, Bin</au><au>Su, Chun-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-03-01</date><risdate>2024</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This article investigates the fault-tolerant formation control (FTFC) problem for networked fixed-wing unmanned aerial vehicles (UAVs) against faults. To constrain the distributed tracking errors of follower UAVs with respect to neighboring UAVs in the presence of faults, finite-time prescribed performance functions (PPFs) are developed to transform the distributed tracking errors into a new set of errors by incorporating user-specified transient and steady-state requirements. Then, the critic neural networks (NNs) are developed to learn the long-term performance indices, which are used to evaluate the distributed tracking performance. Based on the generated critic NNs, actor NNs are designed to learn the unknown nonlinear terms. Moreover, to compensate for the reinforcement learning errors of actor-critic NNs, nonlinear disturbance observers (DOs) with skillfully constructed auxiliary learning errors are developed to facilitate the FTFC design. Furthermore, by using the Lyapunov stability analysis, it is shown that all follower UAVs can track the leader UAV with predesigned offsets, and the distributed tracking errors are finite-time convergent. Finally, comparative simulation results are presented to show the effectiveness of the proposed control scheme.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>37310817</pmid><doi>10.1109/TNNLS.2023.3281403</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3458-9303</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0002-1026-4195</orcidid><orcidid>https://orcid.org/0000-0002-1869-5563</orcidid><orcidid>https://orcid.org/0000-0003-2696-5436</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-237X |
ispartof | IEEE transaction on neural networks and learning systems, 2024-03, Vol.35 (3), p.1-15 |
issn | 2162-237X 2162-2388 |
language | eng |
recordid | cdi_proquest_miscellaneous_2825810896 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Artificial neural networks Disturbance observer (DO) Disturbance observers Fault tolerance Fault tolerant systems fault-tolerant formation control (FTFC) finite-time prescribed performance Fixed wings fixed-wing unmanned aerial vehicle (UAV) Formation control fractional-order (FO) control Learning Machine learning Neural networks Performance indices Reinforcement Reinforcement learning reinforcement learning control Stability analysis Steady-state Tracking errors Transient analysis Unmanned aerial vehicles |
title | Reinforcement Learning-Based Fractional-Order Adaptive Fault-Tolerant Formation Control of Networked Fixed-Wing UAVs With Prescribed Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reinforcement%20Learning-Based%20Fractional-Order%20Adaptive%20Fault-Tolerant%20Formation%20Control%20of%20Networked%20Fixed-Wing%20UAVs%20With%20Prescribed%20Performance&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Yu,%20Ziquan&rft.date=2024-03-01&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2023.3281403&rft_dat=%3Cproquest_RIE%3E2825810896%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2933610674&rft_id=info:pmid/37310817&rft_ieee_id=10149179&rfr_iscdi=true |