Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration

With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10–30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2023-06, Vol.39 (25), p.8787-8800
Hauptverfasser: Ronghe, Anshaj, Ayappa, K. Ganapathy
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8800
container_issue 25
container_start_page 8787
container_title Langmuir
container_volume 39
creator Ronghe, Anshaj
Ayappa, K. Ganapathy
description With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10–30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation−π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid–vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water–water hydrogen bonds and reduce surface tension at the liquid–vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.
doi_str_mv 10.1021/acs.langmuir.3c00797
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2825809404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2825809404</sourcerecordid><originalsourceid>FETCH-LOGICAL-a348t-c71ecceaaaeb78f61308b75a8be89d7b476369cbd7b536c7879936e740b2637e3</originalsourceid><addsrcrecordid>eNp9kEFv2zAMhYVhRZN1_QfDoOMuziRLtqTdhsDtCgTroS12NGiFblzYkiPZQ_fvqyDJjj2RIN97BD9CvnC24izn38HGVQ_ueZi7sBKWMWXUB7LkRc6yQufqI1kyJUWmZCkW5FOML4wxI6S5JAuhBM9zw5dkfxtg3KFD-hucH33ASCu3A2eR_oEJA63-QhrD1HlH2-AH-gD9RB98Px9G8QetXsfeh84902mHtGpbtFOkvqV3aU3Bbenapzg3HUM-k4sW-ojXp3pFnm6qx_WvbHN_e7f-uclASD1lVnG0FgEAG6XbkgumG1WAblCbrWqkKkVpbJPaQpRWaWWMKFFJ1uSlUCiuyLdj7hj8fsY41UMXLfaJGfo51rnOC82MZDJJ5VFqg48xYFuPoRsg_Ks5qw-w6wS7PsOuT7CT7evpwtwMuP1vOtNNAnYUHOwvfg4uPfx-5hug0pB_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2825809404</pqid></control><display><type>article</type><title>Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration</title><source>American Chemical Society Journals</source><creator>Ronghe, Anshaj ; Ayappa, K. Ganapathy</creator><creatorcontrib>Ronghe, Anshaj ; Ayappa, K. Ganapathy</creatorcontrib><description>With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10–30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation−π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid–vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water–water hydrogen bonds and reduce surface tension at the liquid–vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/acs.langmuir.3c00797</identifier><identifier>PMID: 37312291</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2023-06, Vol.39 (25), p.8787-8800</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a348t-c71ecceaaaeb78f61308b75a8be89d7b476369cbd7b536c7879936e740b2637e3</citedby><cites>FETCH-LOGICAL-a348t-c71ecceaaaeb78f61308b75a8be89d7b476369cbd7b536c7879936e740b2637e3</cites><orcidid>0000-0001-7599-794X ; 0000-0002-7770-7253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.langmuir.3c00797$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.langmuir.3c00797$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37312291$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ronghe, Anshaj</creatorcontrib><creatorcontrib>Ayappa, K. Ganapathy</creatorcontrib><title>Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10–30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation−π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid–vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water–water hydrogen bonds and reduce surface tension at the liquid–vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv2zAMhYVhRZN1_QfDoOMuziRLtqTdhsDtCgTroS12NGiFblzYkiPZQ_fvqyDJjj2RIN97BD9CvnC24izn38HGVQ_ueZi7sBKWMWXUB7LkRc6yQufqI1kyJUWmZCkW5FOML4wxI6S5JAuhBM9zw5dkfxtg3KFD-hucH33ASCu3A2eR_oEJA63-QhrD1HlH2-AH-gD9RB98Px9G8QetXsfeh84902mHtGpbtFOkvqV3aU3Bbenapzg3HUM-k4sW-ojXp3pFnm6qx_WvbHN_e7f-uclASD1lVnG0FgEAG6XbkgumG1WAblCbrWqkKkVpbJPaQpRWaWWMKFFJ1uSlUCiuyLdj7hj8fsY41UMXLfaJGfo51rnOC82MZDJJ5VFqg48xYFuPoRsg_Ks5qw-w6wS7PsOuT7CT7evpwtwMuP1vOtNNAnYUHOwvfg4uPfx-5hug0pB_</recordid><startdate>20230627</startdate><enddate>20230627</enddate><creator>Ronghe, Anshaj</creator><creator>Ayappa, K. Ganapathy</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7599-794X</orcidid><orcidid>https://orcid.org/0000-0002-7770-7253</orcidid></search><sort><creationdate>20230627</creationdate><title>Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration</title><author>Ronghe, Anshaj ; Ayappa, K. Ganapathy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a348t-c71ecceaaaeb78f61308b75a8be89d7b476369cbd7b536c7879936e740b2637e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronghe, Anshaj</creatorcontrib><creatorcontrib>Ayappa, K. Ganapathy</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronghe, Anshaj</au><au>Ayappa, K. Ganapathy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2023-06-27</date><risdate>2023</risdate><volume>39</volume><issue>25</issue><spage>8787</spage><epage>8800</epage><pages>8787-8800</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>With increased water stress, the development of clean water technologies is an active area of research. Evaporation-based solutions offer the advantage of low energy consumption, and recently a 10–30 fold enhancement in water evaporation flux has been observed through Å-scale graphene nanopores (Lee, W.-C., et al., ACS Nano 2022, 16(9), 15382). Herein, using molecular dynamics simulations, we examine the suitability of Å-scale graphene nanopores in enhancing water evaporation from salt solutions (LiCl, NaCl, and KCl). Cation−π interactions between ions and the surface of nanoporous graphene are found to significantly influence ion populations in the nanopore vicinity, leading to varied water evaporation fluxes from different salt solutions. The highest water evaporation flux was observed for KCl solutions, followed by NaCl and LiCl solutions, with the differences reducing at lower concentrations. Relative to the bare liquid–vapor interface, 4.54 Å nanopores exhibit the highest evaporation flux enhancements ranging from 7 to 11, with an enhancement of 10.8 obtained for 0.6 M NaCl solution, which closely resembles seawater compositions. Functionalized nanopores induce short-lived water–water hydrogen bonds and reduce surface tension at the liquid–vapor interface, thereby lowering the free energy barrier for water evaporation with a negligible effect on the ion hydration dynamics. These findings can aid in developing green technologies for desalination and separation processes with low thermal energy input.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>37312291</pmid><doi>10.1021/acs.langmuir.3c00797</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7599-794X</orcidid><orcidid>https://orcid.org/0000-0002-7770-7253</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2023-06, Vol.39 (25), p.8787-8800
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_2825809404
source American Chemical Society Journals
title Graphene Nanopores Enhance Water Evaporation from Salt Solutions: Exploring the Effects of Ions and Concentration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A48%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Graphene%20Nanopores%20Enhance%20Water%20Evaporation%20from%20Salt%20Solutions:%20Exploring%20the%20Effects%20of%20Ions%20and%20Concentration&rft.jtitle=Langmuir&rft.au=Ronghe,%20Anshaj&rft.date=2023-06-27&rft.volume=39&rft.issue=25&rft.spage=8787&rft.epage=8800&rft.pages=8787-8800&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/acs.langmuir.3c00797&rft_dat=%3Cproquest_cross%3E2825809404%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2825809404&rft_id=info:pmid/37312291&rfr_iscdi=true