Minimum cost trajectory planning for industrial robots
We discuss the problem of minimum cost trajectory planning for robotic manipulators. It consists of linking two points in the operational space while minimizing a cost function, taking into account dynamic equations of motion as well as bounds on joint positions, velocities, jerks and torques. This...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2004-07, Vol.23 (4), p.703-715 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We discuss the problem of minimum cost trajectory planning for robotic manipulators. It consists of linking two points in the operational space while minimizing a cost function, taking into account dynamic equations of motion as well as bounds on joint positions, velocities, jerks and torques. This generic optimal control problem is transformed, via a clamped cubic spline model of joint temporal evolutions, into a non-linear constrained optimization problem which is treated then by the Sequential Quadratic Programming (SQP) method. Applications involving grasping mobile object or obstacle avoidance are shown to illustrate the efficiency of the proposed planner. |
---|---|
ISSN: | 0997-7538 1873-7285 |
DOI: | 10.1016/j.euromechsol.2004.02.006 |