Identification of fork points on the skeletons of handwritten Chinese characters

This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1999-10, Vol.21 (10), p.1095-1100
Hauptverfasser: Liu, K., Huang, Y.S., Suen, C.Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1100
container_issue 10
container_start_page 1095
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 21
creator Liu, K.
Huang, Y.S.
Suen, C.Y.
description This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.
doi_str_mv 10.1109/34.799914
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28255183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>799914</ieee_id><sourcerecordid>919929782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</originalsourceid><addsrcrecordid>eNp90L1PwzAQBXALgUQpDKxMmUAMKbbPSXwjqvioVAkGmCMnOSumaVxsV4j_nlZFjEwn3fvpDY-xS8FnQnC8AzWrEFGoIzYRCJhDAXjMJlyUMtda6lN2FuMH50IVHCbsddHRmJx1rUnOj5m3mfVhlW28G1PMdp_UUxZXNFDyY9znvRm7r-BSojGb926kSFnbm2DaRCGesxNrhkgXv3fK3h8f3ubP-fLlaTG_X-YtcEx5BRaUUVXVNcgReEOyJMsbbIgLw620AKi1UNhBh7pUUELTtUYpqhrbAUzZzaF3E_znlmKq1y62NAxmJL-NNQpEiZWWO3n9r5RaFoXQ-8rbA2yDjzGQrTfBrU34rgWv9-vWoOrDujt7dbCOiP7cb_gDKb10_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28255183</pqid></control><display><type>article</type><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</creator><creatorcontrib>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</creatorcontrib><description>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.799914</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Criteria ; Graphs ; Handwriting recognition ; Image analysis ; Image segmentation ; Intelligence ; Joints ; Optical character recognition software ; Optical distortion ; Pattern analysis ; Performance analysis ; Recognition ; Shape ; Skeleton</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1999-10, Vol.21 (10), p.1095-1100</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</citedby><cites>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/799914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/799914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Huang, Y.S.</creatorcontrib><creatorcontrib>Suen, C.Y.</creatorcontrib><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</description><subject>Character recognition</subject><subject>Criteria</subject><subject>Graphs</subject><subject>Handwriting recognition</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Intelligence</subject><subject>Joints</subject><subject>Optical character recognition software</subject><subject>Optical distortion</subject><subject>Pattern analysis</subject><subject>Performance analysis</subject><subject>Recognition</subject><subject>Shape</subject><subject>Skeleton</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90L1PwzAQBXALgUQpDKxMmUAMKbbPSXwjqvioVAkGmCMnOSumaVxsV4j_nlZFjEwn3fvpDY-xS8FnQnC8AzWrEFGoIzYRCJhDAXjMJlyUMtda6lN2FuMH50IVHCbsddHRmJx1rUnOj5m3mfVhlW28G1PMdp_UUxZXNFDyY9znvRm7r-BSojGb926kSFnbm2DaRCGesxNrhkgXv3fK3h8f3ubP-fLlaTG_X-YtcEx5BRaUUVXVNcgReEOyJMsbbIgLw620AKi1UNhBh7pUUELTtUYpqhrbAUzZzaF3E_znlmKq1y62NAxmJL-NNQpEiZWWO3n9r5RaFoXQ-8rbA2yDjzGQrTfBrU34rgWv9-vWoOrDujt7dbCOiP7cb_gDKb10_w</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Liu, K.</creator><creator>Huang, Y.S.</creator><creator>Suen, C.Y.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19991001</creationdate><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><author>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Character recognition</topic><topic>Criteria</topic><topic>Graphs</topic><topic>Handwriting recognition</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Intelligence</topic><topic>Joints</topic><topic>Optical character recognition software</topic><topic>Optical distortion</topic><topic>Pattern analysis</topic><topic>Performance analysis</topic><topic>Recognition</topic><topic>Shape</topic><topic>Skeleton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Huang, Y.S.</creatorcontrib><creatorcontrib>Suen, C.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, K.</au><au>Huang, Y.S.</au><au>Suen, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of fork points on the skeletons of handwritten Chinese characters</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1999-10-01</date><risdate>1999</risdate><volume>21</volume><issue>10</issue><spage>1095</spage><epage>1100</epage><pages>1095-1100</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</abstract><pub>IEEE</pub><doi>10.1109/34.799914</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1999-10, Vol.21 (10), p.1095-1100
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_28255183
source IEEE Electronic Library (IEL)
subjects Character recognition
Criteria
Graphs
Handwriting recognition
Image analysis
Image segmentation
Intelligence
Joints
Optical character recognition software
Optical distortion
Pattern analysis
Performance analysis
Recognition
Shape
Skeleton
title Identification of fork points on the skeletons of handwritten Chinese characters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20fork%20points%20on%20the%20skeletons%20of%20handwritten%20Chinese%20characters&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20K.&rft.date=1999-10-01&rft.volume=21&rft.issue=10&rft.spage=1095&rft.epage=1100&rft.pages=1095-1100&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.799914&rft_dat=%3Cproquest_RIE%3E919929782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28255183&rft_id=info:pmid/&rft_ieee_id=799914&rfr_iscdi=true