Identification of fork points on the skeletons of handwritten Chinese characters
This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleto...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 1999-10, Vol.21 (10), p.1095-1100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1100 |
---|---|
container_issue | 10 |
container_start_page | 1095 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 21 |
creator | Liu, K. Huang, Y.S. Suen, C.Y. |
description | This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points. |
doi_str_mv | 10.1109/34.799914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_28255183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>799914</ieee_id><sourcerecordid>919929782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</originalsourceid><addsrcrecordid>eNp90L1PwzAQBXALgUQpDKxMmUAMKbbPSXwjqvioVAkGmCMnOSumaVxsV4j_nlZFjEwn3fvpDY-xS8FnQnC8AzWrEFGoIzYRCJhDAXjMJlyUMtda6lN2FuMH50IVHCbsddHRmJx1rUnOj5m3mfVhlW28G1PMdp_UUxZXNFDyY9znvRm7r-BSojGb926kSFnbm2DaRCGesxNrhkgXv3fK3h8f3ubP-fLlaTG_X-YtcEx5BRaUUVXVNcgReEOyJMsbbIgLw620AKi1UNhBh7pUUELTtUYpqhrbAUzZzaF3E_znlmKq1y62NAxmJL-NNQpEiZWWO3n9r5RaFoXQ-8rbA2yDjzGQrTfBrU34rgWv9-vWoOrDujt7dbCOiP7cb_gDKb10_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28255183</pqid></control><display><type>article</type><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</creator><creatorcontrib>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</creatorcontrib><description>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.799914</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Criteria ; Graphs ; Handwriting recognition ; Image analysis ; Image segmentation ; Intelligence ; Joints ; Optical character recognition software ; Optical distortion ; Pattern analysis ; Performance analysis ; Recognition ; Shape ; Skeleton</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1999-10, Vol.21 (10), p.1095-1100</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</citedby><cites>FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/799914$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/799914$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Huang, Y.S.</creatorcontrib><creatorcontrib>Suen, C.Y.</creatorcontrib><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</description><subject>Character recognition</subject><subject>Criteria</subject><subject>Graphs</subject><subject>Handwriting recognition</subject><subject>Image analysis</subject><subject>Image segmentation</subject><subject>Intelligence</subject><subject>Joints</subject><subject>Optical character recognition software</subject><subject>Optical distortion</subject><subject>Pattern analysis</subject><subject>Performance analysis</subject><subject>Recognition</subject><subject>Shape</subject><subject>Skeleton</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp90L1PwzAQBXALgUQpDKxMmUAMKbbPSXwjqvioVAkGmCMnOSumaVxsV4j_nlZFjEwn3fvpDY-xS8FnQnC8AzWrEFGoIzYRCJhDAXjMJlyUMtda6lN2FuMH50IVHCbsddHRmJx1rUnOj5m3mfVhlW28G1PMdp_UUxZXNFDyY9znvRm7r-BSojGb926kSFnbm2DaRCGesxNrhkgXv3fK3h8f3ubP-fLlaTG_X-YtcEx5BRaUUVXVNcgReEOyJMsbbIgLw620AKi1UNhBh7pUUELTtUYpqhrbAUzZzaF3E_znlmKq1y62NAxmJL-NNQpEiZWWO3n9r5RaFoXQ-8rbA2yDjzGQrTfBrU34rgWv9-vWoOrDujt7dbCOiP7cb_gDKb10_w</recordid><startdate>19991001</startdate><enddate>19991001</enddate><creator>Liu, K.</creator><creator>Huang, Y.S.</creator><creator>Suen, C.Y.</creator><general>IEEE</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>19991001</creationdate><title>Identification of fork points on the skeletons of handwritten Chinese characters</title><author>Liu, K. ; Huang, Y.S. ; Suen, C.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-73f34a477db90930be26ef0b9be01a0f2f33988149d3d9864363bdca44e7bfd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Character recognition</topic><topic>Criteria</topic><topic>Graphs</topic><topic>Handwriting recognition</topic><topic>Image analysis</topic><topic>Image segmentation</topic><topic>Intelligence</topic><topic>Joints</topic><topic>Optical character recognition software</topic><topic>Optical distortion</topic><topic>Pattern analysis</topic><topic>Performance analysis</topic><topic>Recognition</topic><topic>Shape</topic><topic>Skeleton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, K.</creatorcontrib><creatorcontrib>Huang, Y.S.</creatorcontrib><creatorcontrib>Suen, C.Y.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics & Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, K.</au><au>Huang, Y.S.</au><au>Suen, C.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of fork points on the skeletons of handwritten Chinese characters</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1999-10-01</date><risdate>1999</risdate><volume>21</volume><issue>10</issue><spage>1095</spage><epage>1100</epage><pages>1095-1100</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>This paper describes techniques for stroke extraction used in the recognition of handwritten Chinese characters. A new set of feature points is proposed for the analysis of skeleton images. Based on a geometrical graph, a novel criterion is proposed for the identification of fork points in a skeleton image which correspond to joint points in the original character image. Experimental results indicate that the proposed method correctly determines the fork points, and is effective in unifying the joint points.</abstract><pub>IEEE</pub><doi>10.1109/34.799914</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 1999-10, Vol.21 (10), p.1095-1100 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_28255183 |
source | IEEE Electronic Library (IEL) |
subjects | Character recognition Criteria Graphs Handwriting recognition Image analysis Image segmentation Intelligence Joints Optical character recognition software Optical distortion Pattern analysis Performance analysis Recognition Shape Skeleton |
title | Identification of fork points on the skeletons of handwritten Chinese characters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20fork%20points%20on%20the%20skeletons%20of%20handwritten%20Chinese%20characters&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Liu,%20K.&rft.date=1999-10-01&rft.volume=21&rft.issue=10&rft.spage=1095&rft.epage=1100&rft.pages=1095-1100&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.799914&rft_dat=%3Cproquest_RIE%3E919929782%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28255183&rft_id=info:pmid/&rft_ieee_id=799914&rfr_iscdi=true |