Efficient methods for multiple types of precise gene‐editing in Chlamydomonas

SUMMARY Precise gene‐editing using CRISPR/Cas9 technology remains a long‐standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi‐type and precise genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2023-08, Vol.115 (3), p.846-865
Hauptverfasser: Chen, Hui, Yang, Qing‐Lin, Xu, Jia‐Xi, Deng, Xuan, Zhang, Yun‐Jie, Liu, Ting, Rots, Marianne G., Xu, Guo‐Liang, Huang, Kai‐Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 865
container_issue 3
container_start_page 846
container_title The Plant journal : for cell and molecular biology
container_volume 115
creator Chen, Hui
Yang, Qing‐Lin
Xu, Jia‐Xi
Deng, Xuan
Zhang, Yun‐Jie
Liu, Ting
Rots, Marianne G.
Xu, Guo‐Liang
Huang, Kai‐Yao
description SUMMARY Precise gene‐editing using CRISPR/Cas9 technology remains a long‐standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi‐type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low‐expression genes (CrTET1 and CrKU80), the introduction of a FLAG‐HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live‐cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3′‐UTR of MAA7 and VIPP1 resulted in a stable knock‐down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications. Significance Statement Efficient precision gene‐editing system was established in Chlamydomonas, including target gene inactivation, single amino acid substitution, knock‐in of an epitope or a YFP tag, and the precise deletion of a DNA fragment in the genome. The methods established in this study will facilitate generating multiple types of genetically modified strains, re‐constructing the metabolism pathway for producing the bio‐fuel and high‐value algal compounds, and modifying the structure of the cell wall for bio‐refinery.
doi_str_mv 10.1111/tpj.16265
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2825504051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2841999267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3885-ebe6670c9e000e80e0e15bd8c8922fb27db218563caca55d5bd99acc25876cc93</originalsourceid><addsrcrecordid>eNp10M9KxDAQBvAgiruuHnwBCXjRQ3WSbNLmKMv6D2E9KHgrbTrVLG1TmxbZm4_gM_okRlc9CM5lDvPjY_gI2WdwwsKc9u3yhCmu5AYZM6FkJJh42CRj0AqieMr4iOx4vwRgsVDTbTISsWDAAcZkMS9Layw2Pa2xf3KFp6XraD1UvW0rpP2qRU9dSdsOjfVIH7HB99c3LGxvm0dqGzp7qrJ6VbjaNZnfJVtlVnnc-94Tcn8-v5tdRjeLi6vZ2U1kRJLICHNUKgajEQAwAQRkMi8Sk2jOy5zHRc5ZIpUwmcmkLMJN68wYLpNYGaPFhBytc9vOPQ_o-7S23mBVZQ26wac84VLCFCQL9PAPXbqha8J3QU2Z1pqrOKjjtTKd877DMm07W2fdKmWQfrachpbTr5aDPfhOHPIai1_5U2sAp2vwYitc_Z-U3t1eryM_AFiXh1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841999267</pqid></control><display><type>article</type><title>Efficient methods for multiple types of precise gene‐editing in Chlamydomonas</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><creator>Chen, Hui ; Yang, Qing‐Lin ; Xu, Jia‐Xi ; Deng, Xuan ; Zhang, Yun‐Jie ; Liu, Ting ; Rots, Marianne G. ; Xu, Guo‐Liang ; Huang, Kai‐Yao</creator><creatorcontrib>Chen, Hui ; Yang, Qing‐Lin ; Xu, Jia‐Xi ; Deng, Xuan ; Zhang, Yun‐Jie ; Liu, Ting ; Rots, Marianne G. ; Xu, Guo‐Liang ; Huang, Kai‐Yao</creatorcontrib><description>SUMMARY Precise gene‐editing using CRISPR/Cas9 technology remains a long‐standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi‐type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low‐expression genes (CrTET1 and CrKU80), the introduction of a FLAG‐HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live‐cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3′‐UTR of MAA7 and VIPP1 resulted in a stable knock‐down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications. Significance Statement Efficient precision gene‐editing system was established in Chlamydomonas, including target gene inactivation, single amino acid substitution, knock‐in of an epitope or a YFP tag, and the precise deletion of a DNA fragment in the genome. The methods established in this study will facilitate generating multiple types of genetically modified strains, re‐constructing the metabolism pathway for producing the bio‐fuel and high‐value algal compounds, and modifying the structure of the cell wall for bio‐refinery.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.16265</identifier><identifier>PMID: 37310200</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>3' Untranslated regions ; Amino acid substitution ; Amino acids ; Chlamydomonas ; Cilia ; CRISPR ; Deoxyribonucleic acid ; DNA ; DNA damage ; Editing ; efficient ; Epitopes ; Gene deletion ; Gene expression ; Genes ; Genetic engineering ; Genetic modification ; gene‐editing ; homology‐mediated ; Inactivation ; Industrial applications ; multi‐type ; Nuclease ; Phenotypes ; Photosynthesis ; precision ; Substitutes</subject><ispartof>The Plant journal : for cell and molecular biology, 2023-08, Vol.115 (3), p.846-865</ispartof><rights>2023 Society for Experimental Biology and John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2023 Society for Experimental Biology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3885-ebe6670c9e000e80e0e15bd8c8922fb27db218563caca55d5bd99acc25876cc93</citedby><cites>FETCH-LOGICAL-c3885-ebe6670c9e000e80e0e15bd8c8922fb27db218563caca55d5bd99acc25876cc93</cites><orcidid>0000-0001-8669-1065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.16265$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.16265$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/37310200$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Yang, Qing‐Lin</creatorcontrib><creatorcontrib>Xu, Jia‐Xi</creatorcontrib><creatorcontrib>Deng, Xuan</creatorcontrib><creatorcontrib>Zhang, Yun‐Jie</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Rots, Marianne G.</creatorcontrib><creatorcontrib>Xu, Guo‐Liang</creatorcontrib><creatorcontrib>Huang, Kai‐Yao</creatorcontrib><title>Efficient methods for multiple types of precise gene‐editing in Chlamydomonas</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>SUMMARY Precise gene‐editing using CRISPR/Cas9 technology remains a long‐standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi‐type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low‐expression genes (CrTET1 and CrKU80), the introduction of a FLAG‐HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live‐cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3′‐UTR of MAA7 and VIPP1 resulted in a stable knock‐down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications. Significance Statement Efficient precision gene‐editing system was established in Chlamydomonas, including target gene inactivation, single amino acid substitution, knock‐in of an epitope or a YFP tag, and the precise deletion of a DNA fragment in the genome. The methods established in this study will facilitate generating multiple types of genetically modified strains, re‐constructing the metabolism pathway for producing the bio‐fuel and high‐value algal compounds, and modifying the structure of the cell wall for bio‐refinery.</description><subject>3' Untranslated regions</subject><subject>Amino acid substitution</subject><subject>Amino acids</subject><subject>Chlamydomonas</subject><subject>Cilia</subject><subject>CRISPR</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Editing</subject><subject>efficient</subject><subject>Epitopes</subject><subject>Gene deletion</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>gene‐editing</subject><subject>homology‐mediated</subject><subject>Inactivation</subject><subject>Industrial applications</subject><subject>multi‐type</subject><subject>Nuclease</subject><subject>Phenotypes</subject><subject>Photosynthesis</subject><subject>precision</subject><subject>Substitutes</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M9KxDAQBvAgiruuHnwBCXjRQ3WSbNLmKMv6D2E9KHgrbTrVLG1TmxbZm4_gM_okRlc9CM5lDvPjY_gI2WdwwsKc9u3yhCmu5AYZM6FkJJh42CRj0AqieMr4iOx4vwRgsVDTbTISsWDAAcZkMS9Layw2Pa2xf3KFp6XraD1UvW0rpP2qRU9dSdsOjfVIH7HB99c3LGxvm0dqGzp7qrJ6VbjaNZnfJVtlVnnc-94Tcn8-v5tdRjeLi6vZ2U1kRJLICHNUKgajEQAwAQRkMi8Sk2jOy5zHRc5ZIpUwmcmkLMJN68wYLpNYGaPFhBytc9vOPQ_o-7S23mBVZQ26wac84VLCFCQL9PAPXbqha8J3QU2Z1pqrOKjjtTKd877DMm07W2fdKmWQfrachpbTr5aDPfhOHPIai1_5U2sAp2vwYitc_Z-U3t1eryM_AFiXh1I</recordid><startdate>202308</startdate><enddate>202308</enddate><creator>Chen, Hui</creator><creator>Yang, Qing‐Lin</creator><creator>Xu, Jia‐Xi</creator><creator>Deng, Xuan</creator><creator>Zhang, Yun‐Jie</creator><creator>Liu, Ting</creator><creator>Rots, Marianne G.</creator><creator>Xu, Guo‐Liang</creator><creator>Huang, Kai‐Yao</creator><general>Blackwell Publishing Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8669-1065</orcidid></search><sort><creationdate>202308</creationdate><title>Efficient methods for multiple types of precise gene‐editing in Chlamydomonas</title><author>Chen, Hui ; Yang, Qing‐Lin ; Xu, Jia‐Xi ; Deng, Xuan ; Zhang, Yun‐Jie ; Liu, Ting ; Rots, Marianne G. ; Xu, Guo‐Liang ; Huang, Kai‐Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3885-ebe6670c9e000e80e0e15bd8c8922fb27db218563caca55d5bd99acc25876cc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>3' Untranslated regions</topic><topic>Amino acid substitution</topic><topic>Amino acids</topic><topic>Chlamydomonas</topic><topic>Cilia</topic><topic>CRISPR</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Editing</topic><topic>efficient</topic><topic>Epitopes</topic><topic>Gene deletion</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>gene‐editing</topic><topic>homology‐mediated</topic><topic>Inactivation</topic><topic>Industrial applications</topic><topic>multi‐type</topic><topic>Nuclease</topic><topic>Phenotypes</topic><topic>Photosynthesis</topic><topic>precision</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hui</creatorcontrib><creatorcontrib>Yang, Qing‐Lin</creatorcontrib><creatorcontrib>Xu, Jia‐Xi</creatorcontrib><creatorcontrib>Deng, Xuan</creatorcontrib><creatorcontrib>Zhang, Yun‐Jie</creatorcontrib><creatorcontrib>Liu, Ting</creatorcontrib><creatorcontrib>Rots, Marianne G.</creatorcontrib><creatorcontrib>Xu, Guo‐Liang</creatorcontrib><creatorcontrib>Huang, Kai‐Yao</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hui</au><au>Yang, Qing‐Lin</au><au>Xu, Jia‐Xi</au><au>Deng, Xuan</au><au>Zhang, Yun‐Jie</au><au>Liu, Ting</au><au>Rots, Marianne G.</au><au>Xu, Guo‐Liang</au><au>Huang, Kai‐Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient methods for multiple types of precise gene‐editing in Chlamydomonas</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2023-08</date><risdate>2023</risdate><volume>115</volume><issue>3</issue><spage>846</spage><epage>865</epage><pages>846-865</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>SUMMARY Precise gene‐editing using CRISPR/Cas9 technology remains a long‐standing challenge, especially for genes with low expression and no selectable phenotypes in Chlamydomonas reinhardtii, a classic model for photosynthesis and cilia research. Here, we developed a multi‐type and precise genetic manipulation method in which a DNA break was generated by Cas9 nuclease and the repair was mediated using a homologous DNA template. The efficacy of this method was demonstrated for several types of gene editing, including inactivation of two low‐expression genes (CrTET1 and CrKU80), the introduction of a FLAG‐HA epitope tag into VIPP1, IFT46, CrTET1 and CrKU80 genes, and placing a YFP tag into VIPP1 and IFT46 for live‐cell imaging. We also successfully performed a single amino acid substitution for the FLA3, FLA10 and FTSY genes, and documented the attainment of the anticipated phenotypes. Lastly, we demonstrated that precise fragment deletion from the 3′‐UTR of MAA7 and VIPP1 resulted in a stable knock‐down effect. Overall, our study has established efficient methods for multiple types of precise gene editing in Chlamydomonas, enabling substitution, insertion and deletion at the base resolution, thus improving the potential of this alga in both basic research and industrial applications. Significance Statement Efficient precision gene‐editing system was established in Chlamydomonas, including target gene inactivation, single amino acid substitution, knock‐in of an epitope or a YFP tag, and the precise deletion of a DNA fragment in the genome. The methods established in this study will facilitate generating multiple types of genetically modified strains, re‐constructing the metabolism pathway for producing the bio‐fuel and high‐value algal compounds, and modifying the structure of the cell wall for bio‐refinery.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>37310200</pmid><doi>10.1111/tpj.16265</doi><tpages>865</tpages><orcidid>https://orcid.org/0000-0001-8669-1065</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2023-08, Vol.115 (3), p.846-865
issn 0960-7412
1365-313X
language eng
recordid cdi_proquest_miscellaneous_2825504051
source Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; IngentaConnect Free/Open Access Journals
subjects 3' Untranslated regions
Amino acid substitution
Amino acids
Chlamydomonas
Cilia
CRISPR
Deoxyribonucleic acid
DNA
DNA damage
Editing
efficient
Epitopes
Gene deletion
Gene expression
Genes
Genetic engineering
Genetic modification
gene‐editing
homology‐mediated
Inactivation
Industrial applications
multi‐type
Nuclease
Phenotypes
Photosynthesis
precision
Substitutes
title Efficient methods for multiple types of precise gene‐editing in Chlamydomonas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A43%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20methods%20for%20multiple%20types%20of%20precise%20gene%E2%80%90editing%20in%20Chlamydomonas&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Chen,%20Hui&rft.date=2023-08&rft.volume=115&rft.issue=3&rft.spage=846&rft.epage=865&rft.pages=846-865&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.16265&rft_dat=%3Cproquest_cross%3E2841999267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841999267&rft_id=info:pmid/37310200&rfr_iscdi=true